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1 Résumé 
Le Modèle Standard (SM) des particules [1] n’explique pas la matière noire et modélise la masse par le 

champ de Higgs trop artificiel. Un autre modèle est attendu depuis longtemps. Le présent modèle 

réinterprète les résultats expérimentaux en respectant la conservation des matières de manière 

stricte. Le résultat obtenu est une famille de particules neutres correspondant à la matière noire. 

Deux particules élémentaires suffisent pour bâtir l’univers. 

2 Introduction 
SM admet d’office l’existence du champ de Higgs [2] dont le potentiel est caractérisé par : 

𝑉(𝜓) = 𝜇2|𝜓|2 + 𝜆|𝜓|4 

D’un point de vue physique, cela revient à admettre l’existence de l’ETHER en lui donnant un autre 

nom et qu’il possède la caractéristique ci-dessus. 

SM considère que le photon possède la dualité onde et corpuscule. Mais ces deux états sont 

physiquement incompatibles. 

SM attribue une charge électrique d’un tiers ou de deux tiers à un quark. C’est en contradiction avec 

la plus petite charge électrique qui vaut un. 

SM modélise le résultat de la neutralisation d’un électron et d’un positron comme deux photons [9] 

[15]. Il y a une violation manifeste du principe de la conservation de la matière. En effet, un photon est 

différent d’une charge électrique. Pourquoi cette neutralisation ne pourrait pas donner une particule 

invisible en libérant les photons ? 

Le présent XijieDong modèle sera désigné par le nom court : XM. 

XM donne une modélisation différente de SM, plus simple, plus intuitive et plus facile à comprendre. 

XM utilise les référentiels galiléens. 

Les principaux sujets se résument comme suit : 

1. Description de 3 matières élémentaires 

2. Description de 8 particules composées 

3. Modélisation de 4 forces fondamentales 

4. Modélisation de l’éther 

5. Démonstration de la stabilité des 8 particules composées 

6. Annonce de quelques prédictions en conséquence du présent modèle 

 

Convention : 

Par abus de langage et par la simplicité, le présent document utilise le nom d’un atome pour 

désigner son noyau. En effet, le sujet principal de la présente étude est le noyau atomique. 

Sauf bien sûr, si le contexte exige le contraire. 
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3 Matériels et méthodes 

3.1 Matériels 
Les matériels utilisés sont : 

• Un Ordinateur Personnel (PC) 

• Une connexion to Internet 

• Le logiciel système d’exploitation : Windows 7 ou supérieur 

• Le logiciel Matlab : version 2019a ou supérieure 

 

3.2 Méthodes 
Il est à préciser que les principes utilisés sont ceux de la mécanique classique. 

Les méthodes consistent à utiliser la procédure suivante : 

1. Consulter les documents cités en référence 

2. Examiner les analyses et les conclusions 

3. La masse nécessite un champ, ce qui conduit à l’existence de l’éther 

4. Réexaminer les équations de transformation en respectant la conservation de la matière de 

manière stricte. 

5. Cela oblige l’introduction de nouvelle particule (charginette) non décrite dans SM. 

6. En examinant l’inverse des équations, l’obligation de l’océan de particules neutres apparait. 

7. En prenant la chromodynamique, les fractions tiers et 2 tiers des charges électriques pour les 

quarks sont choquantes. Cela conduit à repenser la structure des quarks. 

8. En examinant toutes les particules du SM, elles sont presque toutes chargées 

électriquement. Ce qui signifie qu’elles ne sont pas élémentaires.  

9. Par élimination, il ne reste plus que le photon et la charge électrique comme particules 

élémentaires. 

10. En essayant de combiner ces deux, on obtient que des électrinettes et des charginettes. 

11. En essayant toutes les combinaisons possibles avec les charginettes, on obtient la structure 

triangulaire de la chrominette. 

12. Et en continuant la construction avec le même procédé, on obtient la nucléonette. 

13. Par chance, la structure de la chrominette permet de loger une électrinette en son centre. Ce 

qui donne les quarks et les nucléons. 

14. L’existence de l’énergie potentielle conduit aussi à l’existence de médium dans 

l’environnement. 

15. L’existence de l’océan de particules neutres permet de repenser le phénomène ondulatoire 

des particules. 

 

L’opération la plus difficile réside dans la démonstration de la stabilité des particules composées. En 

effet, plus la particule grossisse, plus la démonstration est difficile. Il s’agit des particules suivantes : 

La charginette, la chrominette et la nucléonette. Les méthodes utilisées sont détaillées pour chaque 

particule.  
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3.2.1 Charginette ☯ 
Une charginette est composée de deux électrinettes. Il s’agit d’un problème à 2 corps. La solution à 

un problème à 2 corps est connue depuis longtemps en astronomie. Donc, c’est cette méthode qui 

est utilisée ici. 

La seule différence est qu’ici, c’est la force électrique à la place de la force gravitationnelle. 

La solution sera une expression algébrique. Le rayon r d’une charginette est fonction de la vitesse 

orbitale et de la masse des électrinettes. 

La représentation graphique sera réalisée avec l’outil logiciel Matlab. 

 

3.2.2 Chrominette Δ 
Une chrominette est une particule composée de 3 charginettes. Donc, il y a 6 électrinettes. Le 

problème à 6 corps n’a pas de solution connue aujourd’hui. 

La résolution consiste en étapes suivantes : 

1. Modéliser une charginette comme un disque solide en raison de sa petite dimension et sa 

grande vitesse de rotation. 

2. L’introduction du champ d’énergie et de la rémanence magnétique plaide également en la 

faveur de ce modèle du solide. 

3. Les 2 électrinettes continue de tourner au bord du disque. 

4. Choisir une structure triangulaire afin d’obtenir 3 points de contact pour les 3 charginettes. Il 

faut bien sûr choisir les fréquences de rotation des charginettes afin que la force électrique 

soit attractive aux 3 points de contact. 

5. Modifier la formule de Coulomb afin que l’énergie tende vers une valeur finie quand la 

distance tend vers 0. Car une énergie infinie est physiquement absurde. 

6. Cette formule modifiée permet à 2 électrinettes de se rapprocher sans se neutraliser. La 

vraie neutralisation nécessite plus de conditions. 

7. Avec la rotation des charginettes, la force électrique maintient périodiquement le collage des 

charginettes. 

8. Ceci n’est valable qu’avec une condition. En dehors des voisinages des 3 points de contact, le 

déplacement cumulatif des charginettes ne s’éloigne pas trop. 

9. Les déplacements de chaque charginette sont supposés parallèles à son axe de rotation. Les 

autres déplacements sont supposés négligeables. 

10. Cette condition est garantie par la neutralisation des champs électriques au sein de chaque 

charginette causée par la rotation de deux électrinettes de signes opposés sur un même 

cercle. 

11. Etablir les équations différentielles en tenant compte des hypothèses précédentes. 

12. Résoudre le système d’équations différentielles avec Matlab Simulink. 

 

3.2.3 Nucléonette 品 

Une nucléonette est une particule composée de 3 chrominettes. Donc, il y a 18 électrinettes. Le 

problème à 18 corps n’a pas de solution connue aujourd’hui. 

La résolution consiste en étapes suivantes : 
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1. Commencer par prendre une chrominette nommée le cœur. 

2. Puis prendre deux charginettes, combiner à une des trois charginettes du cœur pour 

fabriquer une deuxième chrominette. 

3. Ainsi, il y a deux chrominettes qui partagent une charginette. Sur cette charginette 

mitoyenne, les 4 points de contact sont répartis uniformément sur son cercle. 

4. Recommencer les étapes 2 et 3 précédentes pour fabriquer la troisième chrominette sur un 

des 2 côtés libres du cœur. 

5. Recommencer les étapes 2 et 3 précédentes pour fabriquer la quatrième chrominette sur le 

côté libre du cœur. 

6. Etablir les équations différentielles en suivant la même façon que pour la chrominette. 

7. La règle des écrans électriques sera utilisée ici. Quand deux électrinettes sont séparées par 

une charginette, leur force électrique sera négligée. 

8. Résoudre le système d’équations différentielles avec Matlab Simulink. 

 

 

4 Résultats 

4.1 Matières de base de l’univers 
Ce paragraphe décrit les matières de base à partir desquelles l’univers peut être construit. 

XM utilise les 3 matières de base suivantes : 

1. photon 中 : une particule élémentaire de type 1 

2. électro 口 : une particule élémentaire de type 2 

3. champ 古 : un champ d’énergie 

 

4.2 Modélisation des 3 matières de base 
Ce paragraphe décrit les modélisations de chacune des matières de base. 

4.2.1 Photon 中 

Le photon est une matière regroupant les particules élémentaires de type 1. Il possède les 

caractéristiques suivantes : 

• 中 : un photon possède une charge neutre 中. Le sens physique de cette charge neutre 

est équivalent à une masse. Son unité est kg. 中 peut prendre n’importe quelle valeur réelle 

positive. 

• c : un photon libre possède une vitesse de déplacement linéaire c qui est celle du SM. 

• 中+ : un photon possède une rotation autour de sa direction de déplacement. Si elle dans 

le sens de la main droite, elle sera notée polarité +.  

• 中- : si cette rotation est dans le sens de la main gauche, elle sera notée polarité -. 

• un photon est modélisé comme un corpuscule. Il n’est pas une onde. 

• ml : un photon possède une masse d’inertie linéaire dans le sens du déplacement ml.  ml 

= ∞. 

• mⱵ : un photon possède une masse d’inertie perpendiculaire au sens du déplacement 

mⱵ.  mⱵ = 中. 
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• 中+中- : deux photons polarités opposées peuvent se coller ensemble pour devenir une 

particule composée 中+中-. Elle est appelée : photonette. Une fois formé en couple, les deux 

photons sont liés. Le comportement de l’un est lié à celui de l’autre. Même s’ils sont séparés 

après. Ce phénomène est appelé intrication. 

• 重
⃗⃗⃗⃗ 

 : un photon 中 placé dans le champ 古 (décrit plus loin), entre en interaction avec ce 

champ et génère un champ gravitationnel 重
⃗⃗⃗⃗ 

. Ce vecteur peut être illustré par le schéma 

suivant : 

 

Figure 1 - Champ gravitationnel d’un photon 

Le vecteur 重
⃗⃗⃗⃗ 

 en un point M dans l’espace peut s’exprimé comme suit : 

重
⃗⃗⃗⃗ 
 =  −𝐺 ⋅

中 𝑟 

𝑟3 + 𝛾3
 

Équation 1 - Formule du champ gravitationnel 

Avec : 

- G : le coefficient d’amplitude = 6, 674 08 *10-11 m3 kg-1 s-2. 

- 中 : la charge neutre du photon. 

- r : la distance séparant les deux particules ayant les 2 photons. 𝑟  est son 

vecteur. 

- γ : est une constante = 1 * 10-18 mètre. 

 

 

4.2.2 Electro 口 

L’électro est une matière regroupant les particules élémentaires de type 2. Il possède les 

caractéristiques suivantes : 

• 口 : un électro possède une charge électrique pure 口. Le sens physique de cette charge 

électrique est équivalent à celle du SM [3] [4], mais dépourvue de photon. 口 peut prendre 2 

valeurs entières : +1e ou -1e. e représente la plus petite charge électrique. 

• Un électro est modélisé comme un corpuscule. Il n’est pas une onde. 

• Il n’a pas de masse inerte. Il n’a pas de masse gravitationnelle. 

• Deux électro de signes opposés peuvent se trouver ensemble en formant une particule 

composée 口+口-. 

M 

P 

中 

r = ||PM|| 

𝑟  

重
⃗⃗⃗⃗ 

 

重⃗⃗⃗  
environnement 
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• Deux électro de même signe ne peuvent pas se trouver ensemble. 

• Un électro peut capturer un photon via le mécanisme suivant : 口
+
口
−
 + 中

+
中
−
 =  𝑒+  +

 𝑒−  (La combinaison d’une paire d’électro et d’une paire de photons donne un électron plus 

un positron. Ces 2 derniers sont aussi appelés : électrinettes.) 

 

4.2.3 Champ 古 

Le champ 古 est une matière constituant l’origine des énergies [8]. Il possède les caractéristiques 

suivantes : 

• 古 : le champ 古 est un champ d’énergie supposé réparti dans l’espace de l’univers. Il 

possède 4 composantes : 电, 磁, 重 et 山. 

• 电 : la composante 电 est un champ électrique. En présence d’une électrinette, la 

densité de ce champ est perturbée. La valeur du champ 电 est modifiée dans l’espace en 

fonction de la distance par rapport à cette électrinette. 

• 磁 : la composante 磁 est un champ magnétique. En présence d’une électrinette, la 

densité de ce champ est perturbée par la rotation de cette électrinette. La valeur du champ

磁 est modifiée dans l’espace en fonction de la distance par rapport à cette électrinette.  

• 重 : la composante 重 est un champ gravitationnel. En présence d’un photon, la densité 

de ce champ est perturbée. La valeur du champ 重 est modifiée dans l’espace en fonction de 

la distance par rapport à ce photon. 

• 山 : la composante 山 est un champ sensible à la densité de matières constitutives du 

champ 古.  En présence d’un photon ou d’un électro, la densité de matière est modifiée. La 

valeur du champ 山 est modifiée dans le voisinage de cette matière. Le champ 山 est 

également appelé champ potentiel. 

• Le champ 古 a un lien privilégié avec le photon qui se déplace à une vitesse linéaire 

constante c lorsque ce photon est seul dans le champ 古. Pour une photonette, le champ 古 

réserve aussi un lien privilégié entre ses deux photons. Un peu comme une corde élastique 

qui les attache ensemble. Ce lien reste actif même quand les 2 photons sont séparés d’une 

grande distance.  

• Le champ 古 n’est pas statique. Les substances soutenant le mécanisme sous-jacent du 

champ 古 sont sensibles à la gravitation. Ces substances sont constamment en mouvement. 

Ce qui signifie que dans un repère absolu, le champ 古 suit le mouvement des grandes 

masses. 

 

4.3 Modélisation des 8 particules composées 
Ce paragraphe décrit les modélisations de 8 particules composées. 

4.3.1 Electrinette e 
L’électrinette regroupe les particules composées : électron et positron. Elle possède les 

caractéristiques suivantes : 

• e : une électrinette est composée d’une charge électrique unitaire +1e ou -1e et un 

photon [6]. 

• 中 : La charge neutre 中 du photon au sein de l’électrinette dépend des conditions de 

création de la paire électron-positron. 
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• En interaction avec le champ 古, une électrinette génère un champ électrique vectoriel : 电
⃗⃗⃗⃗ 

.  

 

Figure 2 - Champ électrique d'une électrinette 

Le vecteur 电
⃗⃗⃗⃗ 

 en un point M dans l’espace peut s’exprimé comme suit : 

电
⃗⃗⃗⃗ 
 =  𝑘𝑒

𝑞 𝑟 

𝑟3 + 𝛽3
 

Équation 2 - Formule du champ électrique 

Avec : 

- ke : le coefficient électrique = 1/(4πε0) 

- ε0 : représente la permittivité diélectrique du vide de référence = 8,854 187* 

10−12 F m−1. 

- r : la distance séparant le point P et le point M. 

- β : est une constante = 1 * 10-18 mètre. 

- q : la charge électrique pondérée : 

𝑞 =  𝑒
中

中
𝑟𝑒𝑓

 

Équation 3 - Formule de la charge électrique pondérée 

- e : la charge électrique unitaire 

- 中 : la charge neutre de l’électrinette au repos. 

- 中 ref : la charge neutre de l’électron de référence ayant servi à la 

détermination de ε0. 

• Une électrinette possède une rotation autour d’un axe passant par son centre. Cette rotation 

est à l’origine du champ magnétique [18]. 

Le sens de rotation d’un positron est illustré par le schéma suivant selon la convention de la 

main droite : 

M 

P 

e 

r = ||PM|| 

𝑟  

电
⃗⃗⃗⃗ 

 电⃗⃗⃗  
environnement 
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Figure 3 - Champ magnétique d'une électrinette 

Le sens de rotation d’un électron est dans le sens opposé. Le champ magnétique 𝐵⃗  s’exprime 

comme suit en utilisant la loi de Biot et Savart : 

𝐵⃗ =
𝜇0
4𝜋
⋅
𝑞 ⋅ 𝑢⃗ ∧ 𝑟 

𝑟3 + 𝛽3
 

Équation 4 - Formule du champ magnétique 

Où : 

- µ0 : coefficient magnétique 

- q : la charge électrique pondérée définie comme pour le champ électrique. 

- 𝑢⃗  : le vecteur unitaire de l’axe de rotation. 

- ∧ : est l’opérateur du produit vectoriel. 

- r : la distance séparant le point O où se trouvent l’électrinette et le point M 

quelconque de l’espace en dehors de l’axe de rotation. 𝑟  est son vecteur. 

- β : est la même constante que pour le champ électrique. 

 

• Le champ magnétique d’une électrinette au repos n’est pas détectable. La raison est que 

l’axe de rotation n’a pas une direction fixe. Lorsqu’une électrinette est en mouvement 

linéaire, la direction du mouvement devient aussi l’axe de rotation. A ce moment, le champ 

magnétique devient détectable. 

• Lors du déplacement d’une électrinette en quittant un point P, elle laisse un trou dans le 

champ 古 au point P. Ce trou ne disparait pas immédiatement. Il reste un petit délai tR. Le 

champ magnétique reste aussi durant ce délai tR. Ce qui entraine la multiplication du champ 

magnétique généré par un électron traversant une bobine de fil en cuivre. 

 

4.3.2 Charginette ☯ 
Une charginette est une particule composée d’un électron et d’un positron ayant une même charge 

neutre 中. Elle possède les caractéristiques suivantes : 

• r : les 2 électrinettes tournent l’une autour de l’autre. Leur trajectoire est un cercle 

dont le rayon est r. Ce rayon est mesuré entre le centre de symétrie et le centre d’une 

électrinette. 

• v : la vitesse de rotation orbitale des électrinettes autour de leur axe de symétrie. 

𝜔⃗⃗  

Lignes de champ 
Magnétique 

e+ 

Axe de rotation au repos ou 
Direction de déplacement 

M 

r 

O 

X 

p 

𝐵⃗  

𝑢⃗  
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• 中 0 : la charge neutre d’une des 2 électrinettes au repos. L’autre électrinette a 

strictement la même charge neutre. 

• 中 g : la charge neutre globale de la charginette. 中 g >  2*中 0. 

• La rotation de deux charges électriques de signes opposés sur un même cercle rend la 

charginette neutre si la mesure est faite à une distance suffisamment grande. 

• O : la structure d’une charginette peut être assimilée à un cercle. Elle est illustrée par le 

schéma suivant : 

 

 

Figure 4 - Structure d'une charginette 

• Ds : bien que la structure de la charginette peut être assimilée à un cercle. Mais les 

propriétés physiques du champ 古 feront d’une charginette comme un disque solide (voir la 

figure suivante). Ceci empêche une électrinette de traverser le disque délimité par le cercle. 

 
• kn : le champ électrique engendré par les 2 électrinettes est grandement atténué par 

leurs rotations orbitales. Cette atténuation kn0 est estimée proportionnelle à la fréquence de 

rotation f. Il s’agit du nombre de tour par seconde. Le coefficient d’atténuation est estimé 

comme suit : 

𝑘𝑛0 =
103

𝑓
 

Équation 5 – Coefficient d’atténuation de la charginette kn0 

Avec : 

f : le nombre de tour par seconde. f > 1000. Si f <= 1000, le coefficient kn0 reste à 

1. Si f > 1014, alors, kn0 reste à 10-11. 

Mais cette atténuation n’est pas applicable au voisinage d’une électrinette. On estime que kn 

tend vers 1 quand la distance tend vers 0. D’où la formule d’atténuation pour tout l’espace et 

pour chaque électrinette : 

𝜔⃗⃗  

X O 

Axe de rotation  

v  

r  

r  

Y 

Z 

e+ 

e- 
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𝑘𝑛 = 10
−
𝐷
𝑟
⋅100 + 𝑘𝑛0 = 10

−
𝐷
𝑟
⋅100 +

103

𝑓
 

Équation 6 - Coefficient d'atténuation Kn forme 1 

Où :  

• r : est le rayon de la charginette. 

• D : est la distance qui sépare l’électrinette intervenant et le point 

considéré. 

 

Pour la force électrique, deux cas de figure se présentent : 

1. l’électrinette externe est libre sans sa propre atténuation interne, kn02 = 1 : 

𝑘𝑛 = 10
−
𝐷
𝑟1
⋅100

+ 𝑘𝑛01 ⋅ 𝑘𝑛02 = 10
−
𝐷
𝑟1
⋅100

+ 𝑘𝑛01 = 10
−
𝐷
𝑟1
⋅100

+
103

𝑓1
 

Équation 7 - Coefficient d'atténuation Kn forme 2 

Où :  

• r1 : est le rayon de la charginette ayant l’électrinette 1. 

• f1 : est la fréquence de rotation de la charginette ayant l’électrinette 1. 

• D : est la distance qui sépare les 2 électrinettes. 

  

2. l’électrinette externe est libre avec sa propre atténuation interne, kn02 = 103/f2 : 

𝑘𝑛 = 10
−

𝐷
𝑟1+𝑟2

⋅200
+ 𝑘𝑛01 ⋅ 𝑘𝑛02 = 10

−
𝐷

𝑟1+𝑟2
⋅200

+
103

𝑓1
⋅
103

𝑓2
= 10

−
𝐷

𝑟1+𝑟2
⋅200

+
106

𝑓1 ⋅ 𝑓2
 

Équation 8 - Coefficient d'atténuation Kn forme 3 

Où :  

• r2 : est le rayon de la charginette ayant l’électrinette 2. 

• f2 : est la fréquence de rotation de la charginette ayant l’électrinette 2. 

 

•  ? : la neutralisation des deux électrinettes de signes opposés rend caduque la règle de 

De Broglie ici [5]. (Rappel de cette règle : la période de rotation orbitale de la charginette doit 

être un multiple de la période propre de chacune des 2 électrinettes donnée par la formule E 

= h/T où E est l’énergie de chacune des électrinettes. T est la période propre. Le coefficient h 

est la constante de Planck) 

 

4.3.3 Chrominette Δ 
Une chrominette est une particule composée de 3 charginettes. Elle possède les caractéristiques 

suivantes : 

• Δ : les 3 charginettes forment une sorte de triangle. La structure peut être illustrée par 

le schéma suivant : 
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Figure 5 - Structure d'une chrominette à t = 0 

• 3 : 3 points de contacts apparaissent. Tout se passe comme si on attache les 3 cercles 

en une chaine. On obtient donc 2 points de contact. Ensuite, on attache les deux cercles des 

2 extrémités. Ainsi, la boucle est bouclée.  

• T : Une condition nécessaire est que les périodes de rotation des 3 charginettes sont 

égales ou des multiples de 3. Considérons la période la plus petite T0. Pour chacune des 2 

autres périodes, elle est soit égale à T0, soit à 3nT0. n est un entier positif. 

• E : une autre condition est que les 3 charginettes ne peuvent pas avoir toutes les 3 le 

même niveau d’énergie. En effet, la règle d’exclusion ne permet que deux électrons de 

même énergie. Ils se distinguent par leur sens de rotation autour de soi-même. Ce qui 

implique qu’au maxima, deux charginettes peuvent avoir le même niveau d’énergie. Les 

électrons de la troisième charginette doit avoir un niveau d’énergie différent. 

• 0 : une chrominette a une apparence électriquement neutre. Il y a 2 raisons pour cela. 

La première est que chacune des 3 charginettes est déjà presque neutre avec sa rotation 

orbitale. La deuxième est que la chrominette n’a pas une direction fixe, au même titre 

qu’une électrinette qui ne montre pas son champ magnétique. 

• r : un cas particulier est que les 3 charginettes aient le même rayon r. Dans ce cas, en 

restant le plus simple possible, on prend 2 charginettes de même niveau d’énergie. Cela 

donne forcément le même rayon de rotation orbitale r et la même vitesse orbitale v1. La 

troisième charginette doit avoir une vitesse de rotation soit 3 fois v1, soit un tiers de v1. 

• Δh Δb : en fonction des niveaux d’énergie des 3 charginettes constitutives. On distingue 

deux types de chrominette. On note vi la vitesse de la charginette chi. Lorsque v3 = 3 v1, et v2 

= v1, la chrominette est de type haut. Lorsque v3 = (1/3) v1, et v2 = v1, la chrominette est de 

type bas. 

• La figure suivante montre une vue artiste des chrominettes : 

 
• Inspiration source [19]. 

Bas 

Haut 
À t = 0 
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Pour les 3 points de contact de la chrominette, il y a un 

e quasi neutralisation. Cela introduit une énergie potentielle appelée énergie de liaison. Cette 

énergie de liaison induit par équivalence entre masse et énergie une masse de liaison. 

C’est cette énergie de liaison qui explique le fait que la masse d’une particule composée est très 

supérieure à la somme des masses de tous les composants. 

 

4.3.4 Nucléonette 品 

Une nucléonette est une particule composée de 3 chrominettes. Elle possède les caractéristiques 

suivantes : 

• 品 : les 3 chrominettes forment une sorte de chaine rebouclée un peu comme pour la 

chrominette. La structure peut être illustrée par le schéma suivant : 

 

 

Figure 6 - Structure d'une nucléonette 

• Pour comprendre le schéma ci-dessus, il faut d’abord prendre une chrominette comme point 

de départ. C’est le triangle du milieu. Pour chaque côté du triangle qui est une charginette, 

donc un cercle, on peut rajouter deux charginettes pour former une nouvelle chrominette. 

Sur le cercle mitoyen, les 4 points de contact sont placés de sorte qu’ils soient uniformément 

répartis. 

• X : La règle d’exclusion s’applique au sein de chaque chrominette. 

•  !X : la règle d’exclusion ne s’applique pas sur les charginettes inter chrominettes. La 

raison est que les charginettes inter chrominettes sont soit suffisamment éloignées, soit 

séparées par un écran électrique formé par une charginette de niveau d’énergie différent.  

• 0 : une nucléonette a une apparence électriquement neutre. Les raisons sont les 

mêmes que pour la chrominette. 

• r : un cas particulier est que toutes les charginettes ont le même rayon r. 

• 品 h 品 b : en fonction du type de chrominette se trouvant au centre de la nucléonette, 

on distingue deux types de nucléonette. Une nucléonette est de type haut si la chrominette 

du centre est du type bas. Réciproquement, une nucléonette est de type bas si la 

chrominette du centre est du type haut. 

q- q+ 
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• La figure suivante montre une vue artiste des nucléonettes : 

 
• Inspiration source [20]. 

 

4.3.5 Quark U+ 
Le quark Up est une particule composée d’une chrominette haute et d’un positron. Elle possède les 

caractéristiques suivantes : 

• e+ : le positron se niche au sein de la chrominette. La structure peut être illustrée par le 

schéma suivant : 

 

 

Figure 7 - Structure d'un quark Up 

• Le fonctionnement de la chrominette induit un trou potentiel d’énergie au centre. Le 

positron y est stable. Mais cette stabilité est toute relative. En effet, la différence de 

potentiel d’énergie entre le centre et son voisinage n’est pas très grande. Donc, si le quark 

subit une accélération trop rapide, le positron au centre n’arrive pas à s’accrocher à la 

chrominette. Et le quark se transforme en une chrominette et un positron. 

• La figure suivante montre une vue artiste du quark U+ : 

e
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• Inspiration source [20]. 

 

4.3.6 Quark D- 
Le quark Down est une particule composée d’une chrominette basse et d’un électron. Elle possède 

les caractéristiques suivantes : 

• e- : l’électron se niche au sein de la chrominette. La structure peut être illustrée par le 

schéma suivant : 

 

 

Figure 8 - Structure d'un quark Down 

• Comme pour le quark Up, le quark Down possède une relative stabilité. 

• La figure suivante montre une vue artiste du quark D- : 

 
• Inspiration source [20]. 
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4.3.7 Proton p+ 
Le proton est une particule composée d’une nucléonette du type bas et de 3 électrinettes. Elle 

possède les caractéristiques suivantes : 

• 品 b : la chrominette du centre du proton est du type haut. Il n’y a pas d’électrinette 

nichée à son centre. 

• e- e+ : Il y a deux chrominettes basses et une chrominette haute à la périphérie du proton. 

Un électron est niché au centre de la chrominette haute. 2 positrons sont nichés chacun aux 

centres de chaque chrominettes basses. La répartition des électrinettes peut être illustrée 

par le schéma suivant : 

 

 

Figure 9 - Structure d'un proton 

• L’addition des charges électriques des 3 électrinettes est égale à : +1e. 

• La figure suivante montre une vue artiste du proton p+ : 

 
• Inspiration source [20]. 

 

e- e+ 
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4.3.8 Neutron n0 
Le neutron est une particule composée d’une nucléonette du type haut et de 4 électrinettes. Elle 

possède les caractéristiques suivantes : 

• 品 h+ : la chrominette du centre du proton est du type bas. Il y a un positron niché à son 

centre. 

• e- e+ : Il y a deux chrominettes hautes et une chrominette basse à la périphérie du 

neutron. Un positron est niché au centre de la chrominette basse. 2 électrons sont nichés 

chacun aux centres de chaque chrominettes hautes. La répartition des électrinettes peut être 

illustrée par le schéma suivant : 

 

 

Figure 10 - Structure d'un neutron 

• L’addition des charges électriques des 4 électrinettes est égale à : 0. 

• La répartition géométrique des 4 électrinettes fait apparaitre un moment électrique et un 

moment magnétique lors de la rotation du neutron autour de son axe de symétrie. Donc, le 

neutron est visible malgré sa charge électrique apparente 0. 

• La figure suivante montre une vue artiste du neutron n0 : 

 
• Inspiration source [20]. 

 

e- e+ 
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4.4 Modélisation d’autres particules composées 

4.4.1 Particules neutres 
Le paragraphe précédent a décrit 4 particules composées neutres. D’autres particules neutres 

peuvent s’obtenir en combinant les charginettes de différents niveaux d’énergie.  

Par exemple : 

En suivant la méthode de construction de la nucléonette, et en partant d’une chrominette, il 

est possible de rajouter à chaque fois deux charginettes de même niveau d’énergie E2 sur une 

charginette de niveau d’énergie E1. Et on obtient ainsi une nouvelle particule composée 

neutre. 

Les particules ainsi obtenues sont théoriquement stables. Surtout si elles forment des 

chaines bouclées. 

Mais si la chaine est trop grande, elles peuvent être instables. 

4.4.1.1 Chrominette jumelle up et down 

 

4.4.1.2 Chrominettes Double up et down 

 

4.4.1.3 chrominette triple up 4-3 et down 3-4 
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4.4.1.4 chrominette triple up 5-2 et down 2-5 

 

 

4.4.2 Particules visibles 
Pour qu’une particule composée soit visible, il suffit qu’elle contienne un ensemble de charges 

électriques non nulle. Ou bien, la répartition des charges électriques n’est pas symétrique. Ce qui fait 

apparaitre un moment électrique, ainsi qu’un moment magnétique. 

Par exemple : 

Pour chaque particule neutre précédemment obtenue, il suffit ajouter un nombre 

d’électrinettes en les répartissant une par centre de chrominette de sorte que la somme de 

ces électrinettes ne soit pas nulle. 

Ou bien de sorte que la répartition de ces électrinettes soit géométriquement asymétrique. 

Les particules ainsi obtenues sont en général instables pour les mêmes raisons que celles des 

quarks Up et Down. 

Un exemple concret, les particules du groupe pion [13] sont composées de deux chrominettes 

partageant une charginette mitoyenne, avec au sein de chaque chrominette, une ou 0 

électrinette. S’il n’y a qu’un électron, on a un π-. S’il n’y a qu’un positron, on a un π+. S’il y a 

un électron et un positron, on a un π0. Théoriquement, il devrait avoir aussi π2-, s’il y a 2 

électrons, et π2+, s’il y a 2 positrons. Mais en pratique, il est difficile de différentier π- de π2-, 

et π+ de π2+, à cause de la faible durée de vie de ces particules. 

4.4.2.1 Muon μ- et μ-- 

 

4.4.2.2 Muon μ+ et μ++ 
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4.4.2.3 Pion π+ down, π- down, π0 down 

 

4.4.2.4 Pion π+ up, π- up, π0 up 

 

4.4.2.5 Kaon k--, K- down 3-4 et K+ down 3-4 

 

4.4.2.6 Kaon K0 down 3-4 et K--+ down 3-4 

 

4.4.2.7 Kaon K+, K- et K0 up 5-2 
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4.4.2.8 Kaon K++ et K-++ up 5-2 

 

4.4.2.9 Kaon K++, K+ et K- up 4-3 

 

4.4.2.10 Kaon K++-, K0 up 4-3 

 

4.4.2.11 Kaon K+, K-, K0 down 2-5 

 

4.4.2.12 Kaon K-- et K+-- down 2-5 

 

 

4.5 Modélisation de quatre forces fondamentales 

4.5.1 La force électrique 

Quand 2 électrinettes sont placées dans le champ 古, chacune subit une force électrique causée par 

le champ électrique de l’autre dans l’axe qui les relie [21]. Elle peut être illustrée par le schéma 

suivant : 
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Figure 11 - La force électrique 

La force électrique F subie par l’électrinette e2, exercée par e1 s’exprime comme suit : 

F⃗  =  𝑘𝑒
𝑞1𝑞2𝑟 𝑢⃗ 

𝑟3 + 𝛽3
 

Équation 9 - Formule de la force électrique 

Où : 

• qi : la charge électrique pondérée de l’électrinette ei (avec i = 1 ou 2) : 

𝑞𝑖 =  𝑒
中
𝑖

中
𝑟𝑒𝑓

 

Équation 10 - Formule de la charge électrique pondérée 

• 中 i : la charge neutre de l’électrinette ei au repos. 

• r : la distance séparant les points P et M où se trouvent respectivement e1 et e2. 

• 𝑢⃗  : le vecteur unitaire de l’axe reliant les points P et M. 

•  ? : les autres paramètres sont décrits dans le paragraphe décrivant l’électrinette. 

Cette force a une valeur maximale quand :  

𝑟 =
𝛽

√2
3 = 0.7937 ⋅ 10−18 𝑚 

Équation 11 - Valeur de r pour force électrique maximale 

Quand r >> β, β peut être éliminé de la formule. On retrouve la forme classique de la force de 

Coulomb. Mais Quand r << β, l’énergie globale causée par la force quand r tend vers 0 tend vers une 

constante finie au lieu de tendre vers l’infinie avec la forme classique. 

 

4.5.2 La force magnétique 

Quand 2 électrinettes sont placées dans le champ 古, chacune subit une force magnétique causée 

par le champ magnétique de l’autre dont la direction dépend de 2 produits vectoriels [3] [4]. Elle peut 

être illustrée par le schéma suivant : 

M 

P 

e
1
 

r = ||PM|| 

𝑢⃗  

e
2
 

𝐹  电 1
⃗⃗ ⃗⃗ ⃗⃗  +电 2

⃗⃗ ⃗⃗ ⃗⃗   
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Figure 12 - La force magnétique 

La force magnétique F subie par l’électrinette e2, exercée par e1 s’exprime comme suit : 

𝐹 = 𝑞2 ⋅ 𝑢2⃗⃗⃗⃗ ∧ 𝐵1⃗⃗⃗⃗  

Équation 12 - Formule de la force magnétique 

Où : 

• q2 : la charge électrique pondérée de l’électrinette e2. 

• 𝑢2⃗⃗⃗⃗  : le vecteur unitaire de l’axe de rotation de l’électrinette e2. 

• ∧ : l’opérateur du produit vectoriel. 

• 𝐵1⃗⃗⃗⃗  : le champ magnétique engendré par l’électrinette e1 au point M situé à une distance 

r du point O où se trouve l’électrinette e1. 

Il est à noter que la présente formule est applicable à 2 électrinettes au repos. En pratique, les 

électrinettes sont en mouvement. Il faut tenir compte de la rémanence magnétique. Cela revient à 

faire l’addition d’une succession d’électrinettes par équivalence interagissant avec une autre 

succession d’électrinettes par équivalence. 

 

4.5.3 La force gravitationnelle 

Quand 2 particules ayant au moins un photon sont placées dans le champ 古, chacune subit une 

force gravitationnelle causée par le champ gravitationnel de l’autre dans l’axe qui les relie [22]. Elle 

peut être illustrée par le schéma suivant : 

r O 
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Figure 13 - La force gravitationnelle 

La force gravitationnelle F subie par le photon 中 2, exercée par 中 1 s’exprime comme suit : 

F⃗  =  −𝐺 ⋅
中
1
中
2
 𝑟 

𝑟3 + 𝛾3
 

Équation 13 - Formule de la force gravitationnelle 

Où : 

• 中 i : la charge neutre du photon i (avec i = 1 ou 2). 

• r : la distance séparant les deux particules. 𝑟  est son vecteur. 

•  ? : les autres paramètres sont décrits dans le paragraphe Photon 中. 

 

Quand r >> γ, γ peut être éliminé de la formule. On retrouve la forme classique de la force de 

Newton. Mais Quand r << γ, l’énergie globale causée par la force quand r tend vers 0 tend vers une 

constante finie au lieu de tendre vers l’infinie avec la forme classique. 

 

4.5.4 La force potentielle 

La force potentielle provient du champ potentiel 山
⃗⃗⃗⃗ 

. Et ce champ s’exprime comme suit : 

山
⃗⃗⃗⃗ 
= −∇⃗⃗ 土 

𝐹 = 𝐷𝑚山
⃗⃗⃗⃗ 

 

Équation 14 - Formule de la force potentielle et du champ potentiel 

Où : 

• ∇⃗⃗  : est l’opérateur gradient Nabla. 

• 土 : est la densité des matières. 

• 𝐹  : la force potentielle 

• Dm : la densité en matière potentielle pour une particule 

M 

P 

中
1
 

r = ||PM|| 

𝑟  
𝐹  

重⃗⃗⃗  
environnement 

中
2
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Pour un M de l’espace, la présence d’un photon ou d’un électro modifie la densité des matières. Les 

interactions entre les particules modifient aussi cette densité. Surtout la neutralisation entre 2 

électrinettes de signes opposés qui mobilise beaucoup d’énergie. La densité d’énergie est 

grandement modifiée au voisinage du point M où la neutralisation a lieu. Ce point M sera appelé le 

centre actif. 

Une autre caractéristique importante est la rémanence de ce champ. En effet, lorsque la cause de la 

modification de la densité disparait, les conséquences ne disparaissent pas immédiatement. Le 

champ 古 met un certain temps non nul à homogénéiser son milieu. Pendant ce temps, le champ 山
⃗⃗⃗⃗ 

 

continue d’agir. 

Cette force potentielle est nécessaire pour expliquer la capture d’un photon par un électro. En effet, 

les 3 forces électrique, magnétique et gravitationnelle n’arrivent pas à expliquer cette capture. 

Ce champ ressemble au champ gravitationnel, mais il y a les différences suivantes : 

• Ce champ agit à la fois sur le photon et l’électro. Tandis que le champ gravitationnel n’agit 

que sur le photon. 

• La portée de ce champ est plus courte que le champ gravitationnel. Elle est estimée à : 10-10 

m. 

• . 

 

4.6 Modélisation de l’éther 

4.6.1 Définition 
Une définition a déjà été donnée il y a des milliers d’années qui considère que l’univers est baigné 

dans une substance nommé éther [8]. 

4.6.2 Composition de l’éther 
L’éther n’est pas une substance pure et uniforme. Il contient au moins deux des composantes 

suivantes : 

1. Un champ d’énergie définie précédemment 

2. Un océan de particules neutres 

3. Peut-être d’autres éléments non identifiés … ? 

L’existence de la composante 1 est évidente car sans ce type de champ, la masse inerte n’existerait 

pas. 

L’existence de la composante 2 provient de la réaction suivante selon SM : 

中
+
  +    中

−
   →    𝑒+    +    𝑒− 

Cette réaction signifie : un photon + et un photon – en collision donne un positron et un électron. 

Cette réaction est vérifiée en laboratoire pour un certain niveau d’énergie des photons. 

Il y a un problème d’interprétation : deux photons se sont transformés en deux électrinettes. L’effet 

Compton nous informe que l’électron est une particule composée d’électro et de photon. La 

transformation ci-dessus fait apparaitre deux électro à partir de néant. Ce qui est en contradiction 

avec la loi de conservation de la matière. 

La réalité de la réaction ci-dessus devrait s’écrire comme suit : 
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中
+
  +    中

−
   →     中

+
中
−
  

中
+
中
−
   +    ☯    →      𝑒+    +    𝑒− 

Cette réaction signifie : première étape : un photon + et un photon en collision donne une paire de 

photons. Deuxième étape : une paire de photons + une charginette faiblement énergisée en collision 

donne un positron et un électron [10] [16]. 

Ainsi, la loi de conservation de la matière est respectée. 

Une question se pose : d’où vient la charginette ? 

Sachant qu’en laboratoire, la charginette n’est pas fournie. Et de toute façon, la charginette est une 

particule neutre. Il n’y a ce jour aucun moyen de la manipuler. 

Donc, il n’y a qu’une seule possibilité : la charginette existe partout dans l’espace. Du moins, dans 

l’espace où il y a de la matière visible. C’est parce que les particules neutres sont attirées par la 

gravitation. 

 

4.6.3 Conséquences de la composition de l’éther 
Le fait que l’éther n’est pas une substance pure et uniforme conduit immédiatement à une première 

conséquence : les résultats des expériences réalisées précédemment impliquant l’éther sont à 

remettre en cause. 

En effet, les interprétations des résultats expérimentaux sont basées sur l’hypothèse que l’éther est 

une entité pure et uniforme. 

Deux expériences suivantes seront réinterprétées ici : 

1. La dualité du photon 

2. L’expérience de Michelson et Morley 

 

4.6.3.1 La dualité du photon 

En fonction des conditions expérimentales, le photon peut se comporter comme onde 

électromagnétique ou bien comme une particule [1]. 

Il est difficile d’interpréter ces 2 phénomènes sans éther ou avec un éther pur. Mais avec un éther 

contenant un océan de particules neutres, l’interprétation devient simple.  

En se déplaçant dans l’espace, le photon rencontre sans cesse des charginettes faiblement 

énergisées. Pour chaque charginette rencontrée, le photon est capturé puis libéré par l’une ou 

l’autre électrinette de la charginette, en faisant un arc électrique. Cela donne l’illusion d’une onde 

électromagnétique dont la fréquence dépend de l’énergie du photon. 

En présence d’autres photons, les électrinettes énergisées par la capture de photons, entrent en 

interaction électrique conduisant à des interférences ondulatoires. 

D’où : l’aspect ondulatoire du photon correspond aux vagues provoquées par le déplacement du 

photon dans l’océan des charginettes. 
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4.6.3.2 L’expérience de Michelson et Morley [17] 

Le prérequis de cette expérience est que la Terre se déplace à une vitesse v dans l’éther et que 

l’éther est statique dans un repère absolu. 

Or le champ 古 suit le mouvement de la Terre, ainsi que les charginettes. Ce qui signifie que l’éther 

et la Terre sont fixes dans le repère local de la Terre. Ce qui est concordant avec la conclusion de 

l’expérience. 

Cette expérience révèle que dans un repère absolu, la vitesse du photon n’est pas constante partout. 

Si un repère local se déplace à une vitesse v0 dans un repère absolu. Alors la vitesse du photon dans 

le repère absolu est : 

𝑣𝑎⃗⃗⃗⃗ = 𝑣0⃗⃗⃗⃗ + 𝑣𝑐⃗⃗  ⃗ 

Où : 

• va : est la vitesse du photon dans le repère absolu. 

• v0 : est la vitesse du repère local dans le repère absolu. 

• vc : est la vitesse du photon dans le repère local. 

Ce qui veut dire qu’un photon traversant différentes zones qui se déplacent dans des directions 

différentes n’a pas une trajectoire droite. Et que sa vitesse absolue à chaque instant est supérieure 

ou égale à c. 

 

4.6.4 L’énergie potentielle 
Lors d’une interaction entre deux particules, une quantité d’énergie potentielle est mise en jeu [14]. 

Cette énergie ne se trouve ni dans la première particule, ni dans la deuxième, mais dans l’espace 

répartie dans le champ générant l’interaction. 

A titre d’exemple, ce paragraphe illustre la détermination de l’énergie potentielle électrique. 

Le champ électrique causé en un point M de l’espace par deux électrinettes peut être schématisé 

comme suit : 

 

Figure 14 - Schéma de l'énergie potentielle 

En négligeant le paramètre β, le champ électrique résultant peut être exprimé par la formule 

suivante : 

X 

Y 

Z 

O d 

r2 

M 

r1 

电
2

⃗⃗ ⃗⃗ ⃗⃗  

电
1

⃗⃗ ⃗⃗⃗⃗   

e1 e2 

𝑢1⃗⃗⃗⃗  
𝑢2⃗⃗⃗⃗  

α 
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电
⃗⃗⃗⃗ 
=电

1

⃗⃗ ⃗⃗ ⃗⃗ 
+电

2

⃗⃗ ⃗⃗ ⃗⃗ 
= 𝑘𝑒

𝑞1

𝑟1
2 𝑢1⃗⃗⃗⃗ + 𝑘𝑒

𝑞2

𝑟2
2 𝑢2⃗⃗⃗⃗  

Avec : 

𝑞1 =
中
1

中
𝑟𝑒𝑓

⋅ 𝑒 

𝑞2 =
中
2

中
𝑟𝑒𝑓

⋅ 𝑒 

 

La densité d’énergie électrique s’écrit : 

𝜌𝑒 =
1

2
𝜀0电

2
=
1

2
𝜀0 (𝑘𝑒

𝑞1

𝑟1
2 𝑢1⃗⃗⃗⃗ + 𝑘𝑒

𝑞2

𝑟2
2 𝑢2⃗⃗⃗⃗ )

2

 

𝜌𝑒 =
1

2
𝜀0𝑘𝑒

2 (
𝑞1
2

𝑟1
4 𝑢1⃗⃗⃗⃗ 

2
+
𝑞2
2

𝑟2
4 𝑢2⃗⃗⃗⃗ 

2
+ 2 

𝑞1

𝑟1
2  
𝑞2

𝑟2
2  𝑢1⃗⃗⃗⃗ ⋅ 𝑢2⃗⃗⃗⃗ ) 

𝜌𝑒 =
1

2
𝜀0𝑘𝑒

2 (
𝑞1
2

𝑟1
4  +  

𝑞2
2

𝑟2
4  + 2 

𝑞1

𝑟1
2  
𝑞2

𝑟2
2  cos(𝛼)) 

𝜌𝑒 = 𝜌𝑒1 + 𝜌𝑒2 + 𝜌𝑒12 

Avec : 

𝜌𝑒1 =
1

2
𝜀0𝑘𝑒

2 (
𝑞1
2

𝑟1
4  ) 

𝜌𝑒2 =
1

2
𝜀0𝑘𝑒

2 ( 
𝑞2
2

𝑟2
4  ) 

𝜌𝑒12 = 𝜀0𝑘𝑒
2 ( 
𝑞1

𝑟1
2  
𝑞2

𝑟2
2  cos(𝛼)) 

Équation 15 - Densité d'énergie potentielle 

L’interprétation physique de ces 3 termes est la suivante : 

1. 𝜌𝑒1 : représente la densité d’énergie de l’électrinette e1 si elle était seule. 

2. 𝜌𝑒2 : représente la densité d’énergie de l’électrinette e2 si elle était seule. 

3. 𝜌𝑒12 : représente la densité d’énergie de l’interaction entre les 2 électrinettes e1 et e2. 

On modélisera l‘énergie d’interaction entre les électrinettes e1 et e2 par l’intégration de cette densité 

ρe12 dans tout l’espace : 

𝐸𝑒12 =∭𝜌𝑒12 ⋅ 𝑑𝜏

𝜏

0

=∭𝜀0𝑘𝑒
2  
𝑞1

𝑟1
2  
𝑞2

𝑟2
2  cos(𝛼) ⋅ 𝑑𝜏

𝜏

0

 

Équation 16 - Définition de l'énergie potentielle 
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Dans le calcul suivant, le cas de 2 charges de même signe est pris en compte. e1 est une charge 

positive. e2 est aussi une charge positive. Les vecteurs 𝑟1⃗⃗⃗   et 𝑟2⃗⃗  ⃗ tiennent compte de cette polarité des 

charges électriques. En coordonnée, on a : 

𝑀(𝑥, 𝑦, 𝑧) = 𝑀(𝑟 ⋅ sin 𝜃 cos𝜑 , 𝑟 ⋅ sin 𝜃 sin𝜑 , 𝑟 ⋅ cos 𝜃 ) 

𝑒1 (
𝑑

2
, 0, 0) 

𝑒2 (−
𝑑

2
, 0, 0) 

𝑟1⃗⃗⃗  (𝑥 −
𝑑

2
, 𝑦, 𝑧) 

𝑟2⃗⃗  ⃗ (𝑥 +
𝑑

2
, 𝑦, 𝑧) 

𝑟1
2 = (𝑥 −

𝑑

2
)
2

+ 𝑦2 + 𝑧2 

𝑟2
2 = (𝑥 +

𝑑

2
)
2

+ 𝑦2 + 𝑧2 

cos(𝛼) =
(𝑥 −

𝑑
2) (𝑥 +

𝑑
2) + 𝑦

2 + 𝑧2

√(𝑥 −
𝑑
2
)
2

+ 𝑦2 + 𝑧2 ⋅ √(𝑥 +
𝑑
2
)
2

+ 𝑦2 + 𝑧2

 

Posons l’intégrale : 

𝐸𝑒12

𝜀0𝑘𝑒
2𝑞1𝑞2

=∭
cos(𝛼)

𝑟1
2𝑟2
2

𝜏

0

⋅ 𝑑𝜏 = I 

I =∭
(𝑥 −

𝑑
2) (𝑥 +

𝑑
2) + 𝑦

2 + 𝑧2

[√(𝑥 −
𝑑
2)
2

+ 𝑦2 + 𝑧2]

3

[√(𝑥 +
𝑑
2)
2

+ 𝑦2 + 𝑧2]

3

𝜏

0

⋅ 𝑑𝜏 

En coordonnée sphérique : 

I = ∫ ∫ ∫
(𝑥 −

𝑑
2) (𝑥 +

𝑑
2) + 𝑦

2 + 𝑧2

[√(𝑥 −
𝑑
2)
2

+ 𝑦2 + 𝑧2]

3

[√(𝑥 +
𝑑
2)
2

+ 𝑦2 + 𝑧2]

3

∞

𝑟=0

𝜋

𝜃=0

2𝜋

𝜑=0

⋅ 𝑟2 sin𝜃 ⋅ 𝑑𝑟 ⋅ 𝑑𝜃 ⋅ 𝑑𝜑 

I = ∫ ∫ ∫
−
𝑑2

4 + 𝑟
2

[√(𝑟2 +
𝑑2

4 )
2

− (𝑥𝑑)2]

3

∞

𝑟=0

𝜋

𝜃=0

2𝜋

𝜑=0

⋅ 𝑟2 sin 𝜃 ⋅ 𝑑𝑟 ⋅ 𝑑𝜃 ⋅ 𝑑𝜑 
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−I = ∫ ∫ ∫
𝑟2 −

𝑑2

4

[√(𝑟2 +
𝑑2

4
)
2

− 𝑑2 ⋅ 𝑟2 ⋅ (cos𝜑)2 [1 − (cos 𝜃)2]]

3

∞

𝑟=0

𝜋

𝜃=0

2𝜋

𝜑=0

⋅ 𝑟2 sin𝜃 ⋅ 𝑑𝑟 ⋅ 𝑑𝑐𝑜𝑠(𝜃) ⋅ 𝑑𝜑 

L’intégrale sur θ peut s’écrire : 

−𝐼𝜃 = ∫
𝑎

[√𝑏 − 𝑐 ⋅ (1 − (cos 𝜃)2)]
3

𝜋

𝜃=0

⋅ 𝑑 cos(𝜃) 

En posant : u = cos(𝜃) , on a : 

−𝐼𝜃 = ∫
𝑎

[√𝑏 − 𝑐 ⋅ (1 − 𝑢2)]
3

−1

𝑢=1

⋅ 𝑑𝑢 

−𝐼𝜃 =
𝑎 ⋅ 𝑢

(𝑏 − 𝑐)√𝑏 + 𝑐 ⋅ 𝑢2 − 𝑐
|
−1

𝑢 = 1
=

−2𝑎

(𝑏_𝑐) ⋅ √𝑏
 

Avec : 

𝑎 = 𝑟2 (𝑟2 −
𝑑2

4
) 

𝑏 = 𝑟2 (𝑟2 +
𝑑2

4
)

2

 

𝑐 = 𝑟2𝑑2[cos(𝜑)]2 

𝑢 = cos(𝜃) 

L’intégrale I devient : 

𝐼 = ∫ ∫
2𝑟2 (𝑟2 −

𝑑2

4 )

[(
𝑑2

4 + 𝑟
2)
2

− 𝑑2𝑟2(cos𝜑)2] (
𝑑2

4 + 𝑟
2)

∞

𝑟=0

2𝜋

𝜑=0

⋅ 𝑑𝑟 ⋅ 𝑑𝜑 

L’intégrale sur φ peut s’écrire : 

𝐼𝜑 = ∫
𝑠

[𝑏 − 𝑤(cos𝜑)2]

2𝜋

𝜑=0

⋅ 𝑑𝜑 =

𝑠 ⋅ tan−1 (
√𝑏 ⋅ tan(𝜑)

√𝑏 − 𝑤
)

√𝑏√𝑏 − 𝑤 |
| 2𝜋

𝜑 = 0
 

Avec : 

𝑠 =
2𝑟2 (𝑟2 −

𝑑2

4 )

(
𝑑2

4 + 𝑟
2)
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𝑏 = (
𝑑2

4
+ 𝑟2)

2

 

𝑤 = 𝑑2𝑟2 

On remarque que les fonctions tangente et arc tangente ne sont pas continues sur intervalle [0, 2π]. 

Donc, il faut traiter par sous intervalles ]-π/2, π/2[ et ]π/2, 3π/2[. 

En examinant tous les cas de figure, on obtient : 

𝐼𝜑 =
±4𝜋𝑟2

(
𝑑2

4
+ 𝑟2)

2 

Donc, la solution est divisée en 2 intervalles pour r : [0, d/2[ et [d/2, ∞[ 

𝐼 = ∫
−4𝜋𝑟2

(
𝑑2

4
+ 𝑟2)

2

𝑑
2

𝑟=0

⋅ 𝑑𝑟 + ∫
4𝜋𝑟2

(
𝑑2

4
+ 𝑟2)

2

∞

𝑟=
𝑑
2

⋅ 𝑑𝑟 

𝐼 =
4𝜋

𝑑
=

𝐸𝑒12

𝜀0𝑘𝑒
2𝑞1𝑞2

 

D’où : 

𝐸𝑒12 = 𝐼𝜀0𝑘𝑒
2𝑞1𝑞2 =

4𝜋𝜀0𝑘𝑒
2𝑞1𝑞2
𝑑

=
𝑘𝑒𝑞1𝑞2
𝑑

 

Or : 

𝑞𝑖 =
中
𝑖0

中
𝑟𝑒𝑓

⋅ 𝑒 

D’où la formule de l’énergie potentielle issue de l’interaction entre 2 électrinettes : 

𝐸𝑒12 = 𝑘𝑒
中
10
中
20

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
 

Équation 17 - Formule de l'énergie potentielle 

 

4.7 Modélisation de la masse inerte 

4.7.1 Définition 
La masse inerte mesure la résistance qu'oppose le corps à toute accélération ou à toute modification 

de l'état de mouvement. Tandis que la masse grave est modélisée comme la charge neutre. 

Il existe une relation entre ces deux masses. 
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4.7.2 L’origine de la masse inerte 
L’origine de la masse inerte est une conséquence des interactions des particules avec le champ 

d’énergie 古. La première cause observable est à travers la rémanence magnétique. La deuxième est 

mesurée à travers la masse inerte des particules composées dues à l’énergie potentielle (le proton 

par exemple). Le point commun de ces deux phénomènes est le champ d’énergie 古. Mais la loi 

régissant cette masse inerte est inconnue. 

Un indice est le photon. Pour accélérer un électron, il faut de l’énergie, donc des photons. Pour 

accélérer une particule composée, on pourrait assimiler chaque énergie potentielle à son point de 

contact. En effet, chaque énergie potentielle participant à la masse est constituée d’un couple 

d’électrinettes de signes opposés et elles s’approchent de très près pour donner un point de contact. 

Ce point de contact est assimilé à une électrinette. Son déplacement introduit également des trous 

de rémanence analogue à la rémanence magnétique. 

 

4.7.3 Le déplacement d’une électrinette 
Une électrinette est composée d’une charge électrique et un photon. Son déplacement peut être 

représenté par le schéma suivant : 

 

Figure 15 - Vecteurs de déplacement de l'électrinette 

Le photon capturé par la charge électrique fait un mouvement circulaire dans la cavité de la charge. 

Lorsque l’électrinette se déplace linéairement, la vitesse du photon 𝑐  peut être représentée par deux 

vecteurs perpendiculaires 𝑣𝑙⃗⃗  ⃗ et 𝑣𝑝⃗⃗⃗⃗ . Et : 

𝑐 = 𝑣𝑙⃗⃗  ⃗ + 𝑣𝑝⃗⃗⃗⃗  

Intuitivement, la masse inerte est proportionnelle à la vitesse linéaire vl et inversement 

proportionnelle à la vitesse perpendiculaire vp. L’expression la plus simple de la masse s’écrit : 

𝑚 = 𝑚0 + 𝑚0 ⋅
𝑣𝑙
𝑣𝑝

 

En remplaçant la vitesse vp par son expression (vl), on a : 

𝑚 = 𝑚0 + 𝑚0 ⋅
𝑣𝑙

√𝑐2 − 𝑣𝑙
2

 

Équation 18 - Formule masse inerte f(m0,v) 

X 

Z 

Y 

O 
A 

d vp 

v
l
 

c 
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Quand la vitesse est très inférieure à c, la masse inerte est quasiment égale à la masse au repos. 

Comme au repos la masse est égale à la charge neutre, on a donc que la masse inerte est égale à la 

mase grave à faible vitesse. 

 

4.7.4 La relation entre la masse inerte et la masse grave 
L’énergie E acquise pendant l’accélération d’une électrinette peut s’exprimer en fonction de la masse 

inerte selon la formule suivante : 

𝐸 = ∫ 𝐹𝑑𝑥
𝑥

0

= ∫ 𝑚𝑎𝑑𝑥
𝑥

0

= ∫ 𝑚 ⋅
𝑑2𝑥

𝑑𝑡2
⋅ 𝑑𝑥

𝑥

𝑥

 

Où : 

• F représente la force d’accélération 

• x représente le déplacement 

• m représente la masse inerte 

• a représente l’accélération 

• t représente le temps 

L’énergie totale de l’électrinette peut s’exprimer par l’équation suivante : 

𝐸0 +∫ 𝑚𝑎𝑑𝑥
𝑥

0

= 𝑘 ⋅中 ⋅ 𝑐2 

Où : 

• E0 est l’énergie initiale au repos de l’électron. 

• 中 représente la charge neutre totale associée à l’électrinette. 

• k est un coefficient permettant d’avoir la même unité d’énergie. 

En dérivant cette équation par rapport à x, on obtient : 

𝑚 ⋅ 𝑎 = 𝑘𝑐2 ⋅
𝑑中

𝑑𝑥
 

Soit : 

𝑚 ⋅
𝑑𝑣

𝑑𝑡
= 𝑘𝑐2 ⋅

𝑑中

𝑑𝑥
 

𝑚 ⋅
𝑑𝑣

𝑑𝑡
⋅ 𝑑𝑥 = 𝑘𝑐2 ⋅ 𝑑中 

𝑚 ⋅ 𝑣 ⋅ 𝑑𝑣 = 𝑘𝑐2 ⋅ 𝑑中 

∫ 𝑚 ⋅ 𝑣 ⋅ 𝑑𝑣 = ∫ 𝑘𝑐2 ⋅ 𝑑中
中

中
0

𝑣

0

 

En remplaçant m par son expression et vl par v, on obtient : 

∫ (𝑚0 + 𝑚0 ⋅
𝑣

√𝑐2 − 𝑣2
) ⋅ 𝑣 ⋅ 𝑑𝑣 = ∫ 𝑘𝑐2 ⋅ 𝑑中

中

中
0

𝑣

0
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On obtient l’égalité : 

𝑘中𝑐2 − 𝑘中
0
𝑐2 =

1

2
𝑚0𝑣

2 +
1

2
𝑚0𝑐

2 ⋅ tan−1 (
𝑣

√𝑐2 − 𝑣2
) −

1

2
𝑚0𝑣√𝑐

2 − 𝑣2 

Pour avoir la même unité de l’énergie pour les deux côtés de l’égalité, k = ½. 

Or 中 0 = m0, donc : 

中 =中
0
+中

0
⋅ (
𝑣

𝑐
)
2

+中
0
⋅ tan−1

(

 

𝑣
𝑐

√1 − (
𝑣
𝑐
)
2

)

 −中
0
⋅
𝑣

𝑐
⋅ √1 − (

𝑣

𝑐
)
2

 

Équation 19 - Formule de la charge neutre 

D’où la masse m en fonction de la charge neutre 中 (partant de l’équation 18 Formule masse inerte 

f(m0,v)) : 

𝑚 =中 ⋅

1 +

𝑣
𝑐

√1 − (
𝑣
𝑐)
2

1 + (
𝑣
𝑐)
2
+ tan−1

(

 

𝑣
𝑐

√1 − (
𝑣
𝑐
)
2

)

 −
𝑣
𝑐 ⋅
√1 − (

𝑣
𝑐)
2

 

Équation 20 – Formule entre la masse inerte et la masse gravitationnelle 

Remarque : 

La fonction réciproque de la tangente n’est pas unique. Il faut donc l’adapter pour que les 

valeurs obtenues correspondent à la réalité. 

Quand v = 0, m = 中. 

Quand v = c, m = ∞. 中 = [2 + (2n+1)π/2]中 0. Avec n = un entier dans [0, ∞[. 

Conclusion : 

Bien que l’inertie d’une particule tende vers l’infini quand sa vitesse tend vers c, sa masse 

grave tend vers une quantité finie. Mais cette quantité finie pourrait devenir infinie si le sens 

physique l’exige. 

 

4.7.5 Vectorisation de la masse inerte 
La modélisation vectorielle du photon montre deux composantes : un vecteur dans la direction du 

déplacement linéaire et un vecteur dans la direction perpendiculaire. Ce qui donne deux masses 

inertes suivantes : 

1. ml : la masse inerte linéaire, observable dans la direction du déplacement 

2. mp : la masse inerte perpendiculaire 

Dans le cas particulier d’une particule au repos, la masse linéaire se confond avec la masse 

perpendiculaire : ml = mp = m0 =中 0. 
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Dans le cas particulier du photon 中, sa vitesse linéaire étant égal à c, la masse linéaire ml = ∞. La 

masse perpendiculaire mp = 中. 

La masse inerte linéaire est dépendante de la vitesse de déplacement. La masse inerte 

perpendiculaire est indépendante de la vitesse de déplacement. 

 

4.8 Modélisation de la stabilité des 8 particules composées 
Dans les expériences réalisées à l’aide des collisionneurs, il y a un grand nombre de particules 

observables. Mais très peu sont stables. Donc, dans tout modèle de particules fondamentales, la 

démonstration de la stabilité des particules est un élément central qui mérite d’être détaillée.  Ce 

chapitre décrit les modèles de stabilité des 8 particules composées listées précédemment. 

4.8.1 Stabilité des électrinettes e 
Une électrinette est composée de 1 charge électrique pure et un photon. Leurs stabilité n’est plus à 

démontrer. En effet, les électrons apparaissent dans beaucoup d’équipements électriques de la vie 

courante. 

La structure d’une charge électrique pure est modélisée comme une boule creuse où un photon peut 

être capturé à l’intérieur de cette cavité. Ainsi, une électrinette est née. 

La cavité de la charge électrique pure peut contenir un photon dont le niveau d’énergie dépend de 

son environnement et de sa vitesse linéaire. Lorsque l’électrinette est en mouvement linéaire, toute 

son énergie n’est pas contenue dans sa cavité. Il y a une partie qui reste dans le sillon laissé par son 

déplacement. Le schéma suivant illustre le mouvement d’une paire d’électrinettes : 

 

Figure 16 - Mouvement des électrinettes 

Quand une électrinette est accélérée, il faut fournir des photons supplémentaires. Quand une 

électrinette est décélérée, des photons seront libérés. C’est l’effet Compton [6]. 

Les trous laissés derrières l’électrinette sont vérifiables par l’effet de rémanence magnétique. Le 

nombre de trous est proportionnel à la vitesse v. La durée de vie de ces trous est égale à la durée de 

rémanence magnétique. A la disparition d’un ancien trou, l’énergie correspondante sera restituée via 

le champ d’énergie 古 à un trou nouvellement créé. 

 

4.8.2 Stabilité des charginettes ☯ 
Une charginette est composée de 2 électrinettes de signes opposés. La comparaison des intensités 

des 4 forces conduit à ne retenir que la force électrique 𝐹𝑒⃗⃗  ⃗. 

Le comportement général d’un tel système binaire est la rotation de l’un autour de l’autre dans un 

plan (OXY) selon deux trajectoires périodiques. Le schéma suivant illustre les trajectoires des deux 

charges électriques ainsi que les repères cartésien (O, X, Y) et polaire (O, r, α) : 
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Figure 17 - Dynamique d'une charginette 

Selon la loi fondamentale de la dynamique, on a l’équation suivante l’électrinette e+ au point M, de 

masse inerte m : 

−𝐹𝑒⃗⃗  ⃗ = 𝑚 ⋅ 𝑎 = 𝑚 ⋅ 𝑟 ̈ 

Or selon la relation entre les deux repères, on a : 

𝑢⃗ = cos(𝛼) 𝑖 + sin(𝛼) 𝑗  

𝑤⃗⃗ = − sin(𝛼) 𝑖 + cos(𝛼) 𝑗  

Donc, en dérivant d’abord une fois le vecteur 𝑟 = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗ , on a : 

𝑟 ̇ = (𝑟𝑢⃗ )′ = 𝑟̇ ⋅ 𝑢⃗ +  𝑟 ⋅ 𝑢⃗ ̇ = 𝑟̇ ⋅ 𝑢⃗  −  𝑟𝛼̇ ⋅ sin(𝛼) 𝑖 + 𝑟𝛼̇ ⋅ cos(𝛼) 𝑗 = 𝑟̇ ⋅ 𝑢⃗ + 𝑟𝛼̇ ⋅ 𝑤⃗⃗  

Ensuite, en dérivant une deuxième fois le vecteur 𝑟 ̇, on a : 

𝑟 ̈ = 𝑟̈𝑢⃗ + 𝑟̇𝑢⃗ ̇ + 𝑟̇𝛼̇𝑤⃗⃗ + 𝑟(𝛼̇𝑤⃗⃗ )′ 

𝑟 ̈ = 𝑟̈𝑢⃗ + 𝑟̇(𝛼̇𝑤⃗⃗ ) + 𝑟̇𝛼̇𝑤⃗⃗ + 𝑟[𝛼̈𝑤⃗⃗ + 𝛼̇(𝑤⃗⃗ )̇ ] 

𝑟 ̈ = 𝑟̈𝑢⃗ + 2𝑟̇𝛼̇𝑤⃗⃗ + 𝑟[𝛼̈𝑤⃗⃗ + 𝛼̇(−𝛼̇ ⋅ cos(𝛼) 𝑖 − 𝛼̇ ⋅ sin(𝛼) 𝑗 )] 

𝑟 ̈ = 𝑟̈𝑢⃗ + 2𝑟̇𝛼̇𝑤⃗⃗ + 𝑟𝛼̈𝑤⃗⃗ − 𝑟𝛼̇2𝑢⃗  

𝑟 ̈ = (𝑟̈ − 𝑟𝛼̇2)𝑢⃗ + (2𝑟̇𝛼̇ + 𝑟𝛼̈)𝑤⃗⃗  

Dans le repère polaire (O, r, α), on identifie les forces en tenant compte des masses inertes ml pour 𝑤⃗⃗  

et mⱵ pour 𝑢⃗  : 

−𝐹𝑒 = 𝑚𝑙 ⋅ (𝑟̈ − 𝑟𝛼̇
2)     (1) 

0 = 𝑚Ⱶ ⋅ (2𝑟̇𝛼̇ + 𝑟𝛼̈)     (2) 

En supposant que la vitesse orbitale v de la charginette est très inférieure à la vitesse du photon c, la 

masse inerte linéaire sera égale à la charge neutre 中 de l’électrinette au point M : 

𝑚𝑙 =中 

La masse induite par l’énergie potentielle est négligeable ici. En effet, il n’y a pas de point de 

neutralisation, et pas de variation d’énergie potentielle. 

Comme mⱵ > 0, l’équation (2) donne : 

e- 
e+ 

F
e
 

α 
O 

M(x, y) ou (r, α) 

X 

Y 
r = ԡ𝑂𝑀ԡ = √𝑥2 + 𝑦2 

M
1
(-x, -y) 

r1 = ԡ𝑂𝑀1ԡ = √𝑥2 + 𝑦2 

𝑖  

𝑗  

𝑢⃗  𝑤⃗⃗  

𝑣  
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0 = 2𝑟̇𝛼̇  + 𝑟𝛼̈  =
1

𝑟
⋅ (𝑟2𝛼̇)′ 

Comme r  > 0, on en déduit que : 

(𝑟2𝛼̇)′ = 0 

Soit : 

𝑟2𝛼̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒 =  𝐶𝑎 = 𝑟0𝑣0 

Ce qui permet de transformer la vitesse tangentielle pour qu’elle ne dépende uniquement que de r : 

𝑣2 = 𝑟̇2 + (𝑟𝛼̇)2 = 𝑟̇2 +
𝐶𝑎
2

𝑟2
 

L’équation (1) devient une équation qui ne dépend qu’une seule variable r : 

−
𝐹𝑒

𝑚𝑙
= 𝑟̈ −

𝐶𝑎
2

𝑟3
      (3) 

Résolvons cette équation de manière algébrique dans le cas particulier suivant : 

1. 𝑟̈ = 𝑟̇ = 0 

2. 𝛼̈ = 0 

Sous cette hypothèse, v2 devient : 

𝑣2 =
𝐶𝑎
2

𝑟2
 

L’équation (3) devient : 

𝐹𝑒

𝑚𝑙
=
𝑣2

𝑟
      (4) 

La trajectoire de la charginette est un cercle de rayon r constant et à vitesse orbitale v constante. 

Dans ces conditions, les électrinettes de signes opposés de la charginette entraineront une 

neutralisation de la force électrique notée kn. 

L’équation (4) devient : 

𝑘𝑛𝐹𝑒 =
𝑣2

𝑟
⋅ 𝑚𝑙  

Soit en négligeant le paramètre β : 

𝑘𝑛𝑘𝑒
中
2
⋅ 𝑒2

中
𝑟𝑒𝑓

2
⋅ 4𝑟2

=
𝑣2

𝑟
⋅ (中) 

Équation 21 – équation de la charginette 

On avait supposé que la vitesse orbitale v de la charginette est très inférieure à la vitesse du photon 

c. Dans ce cas : 

中 =中
0
 

Donc : 
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𝑘𝑛𝑘𝑒
中
0

2
⋅ 𝑒2

中
𝑟𝑒𝑓

2
⋅ 4𝑟2

=
𝑣2

𝑟
⋅ (中

0
) 

𝑘𝑛
𝑘𝑒
𝑣2
⋅
中
0
⋅ 𝑒2

中
𝑟𝑒𝑓

2
⋅ 4𝑟

= 1 

𝑟 =
𝑘𝑒中0

𝑒2

4中
𝑟𝑒𝑓

2 ⋅ (
𝑘𝑛
𝑣2
) 

Équation 22 - Caractéristique de la charginette 

Si kn = 10-11, alors :  

Changement d’échelle : 

v = vx * 102 m/s 

kn = 10-11 = knx *10-12 = 10 *10-12  

r = rx * 10-15 m 

e = 1,602 176 565*10-19 C = ex * 10-19 C 

c = 2, 997 524 58 * 108 m/s = cx * 108 m/s 

ke = 8,987 551 787 368 176 * 109 kg-1 m-1 A-2 = kex * 109 kg-1 m-1 A-2 

ε0 = 8,854 187 × 10−12 F m−1 = ε0x * 10-12 Fm-1 

中 ref = 9,109382 * 10−31 kg = 中 refx * 10−31 kg 

中 0 = 中 0x * 10−31 kg 

 

𝑟𝑥 =
𝑘𝑒𝑥中0𝑥

𝑒𝑥
2 ⋅ 109 ⋅ 10−38

4中
𝑟𝑒𝑓𝑥

2
⋅ 10−31

⋅ (
10 ⋅ 10−12

𝑣𝑥
2 ⋅ 104

) ⋅ 1015 =
5𝑘𝑒𝑥中0𝑥

𝑒𝑥
2

2中
𝑟𝑒𝑓𝑥

2 ⋅ (
10

𝑣𝑥
2) 

Équation 23 - Caractéristique de charginette après changement d'échelle 

Traçons la nappe à l’aide de Matlab (fichier : charginette_nappe_r_v_zh_kn_10_12_noPot_En.m) : 
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Figure 18 - Caractéristique des charginettes 

Plus de détails sont donnés en : Appendice A.1. 

Conclusion : 

Il existe un grand nombre de charginettes de différents niveaux d’énergie. Plus le rayon d’une 

charginette est petit, plus elle est stable. 

 

4.8.3 Stabilité des chrominettes Δ 
Pour le besoin de la démonstration, prenons une chrominette dont les 3 charginettes ont le même 

rayon r = 0,55605*10-15 m. La vitesse v3 = 3v1 = 9,0 * 102 m/s. En supposant qu’approximativement, la 

formule des charginettes soit applicable ici, déterminons leurs énergies respectives. 

中
𝐻0𝑥

=
2𝑟𝑥中𝑟𝑒𝑓𝑥

2

5𝑘𝑒𝑥𝑒𝑥
2 (
10
𝑣𝑥
2)
=

2 ∗ 0.55605 ∗ 9.1093822

5 ∗ 8.98755 ∗ 1.6021762 (
10
9.02

)
= 6.478 

中
𝐹0𝑥

=
2𝑟𝑥中𝑟𝑒𝑓𝑥

2

5𝑘𝑒𝑥𝑒𝑥
2 (
10
𝑣𝑥
2)
=

2 ∗ 0.55605 ∗ 9.1093822

5 ∗ 8.98755 ∗ 1.6021762 (
10
3.02

)
= 0.72 

(中 H0x, v3x, rx) = (6.478, 9.0, 0.55605). 

(中 F0x, v1x, rx) = (0.72, 3.0, 0.55605). 

La géométrie et les repères fixes peuvent être illustrés par la figure suivante : 
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Figure 19 - Schéma de structure chrominette 

Pour établir le comportement dynamique des 3 charginettes au sein de la chrominette, on va 

procéder en 5 étapes suivantes : 

1. Déterminer les coordonnées des électrinettes et les distances entre elles 

2. Déterminer la masse de chaque électrinette 

3. Déterminer les interactions électriques entre les électrinettes 

4. Etablir les équations dynamiques régissant chaque électrinette 

5. Résoudre  les équations différentielles à l’aide de l’outil progiciel Matlab-Simulink 

 

4.8.3.1 Déterminer les coordonnées des électrinettes et les distances entre elles 

Établissons les relations entre les coordonnées globales et locales des électrinettes. 

Dans le repère global (O, X, Y, Z) : 

𝑂1[0, 0, 𝑧0] 

𝑂2[−𝑧0 ⋅ cos(𝜓) , 0,−𝑧0 ⋅ sin(𝜓)] 

𝑂3[𝑧0 ⋅ cos(𝜓) , 0, −𝑧0 ⋅ sin(𝜓)] 

Dans le repère local (O1, X1, Y1, Z1) : 

𝐹[𝑟 ∗ cos(𝜔𝑡) , 𝑟 ∗ sin(𝜔𝑡) , 𝑧1]𝑅1 

𝐴[−𝑟 ∗ cos(𝜔𝑡) , −𝑟 ∗ sin(𝜔𝑡) , 𝑧1]𝑅1 

Dans le repère local (O2, X2, Y2, Z2) : 

q- q+ 

α 

β=3ωt 

α=ωt 

v 

3v v 

A 

A 

G 

G 

H 

H 

I 

I 

J 

J 

F 

P 

Cercle de diamètre d = 2r 

Z1 

Z 

X1 

Z2 

X2 

Y2 

O1 

O2 

X3 

Y3 

Z3 

O3 

30° 
X1 O1 

O2 

O3 

X3 

X2 

O 

X 

Y1 

M 

S 

F 
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𝐼[−𝑟 ∗ cos(𝜔𝑡) , −𝑟 ∗ sin(𝜔𝑡) , 𝑧2]𝑅2 

𝐽[𝑟 ∗ cos(𝜔𝑡) , 𝑟 ∗ sin(𝜔𝑡) , 𝑧2]𝑅2 

Dans le repère local (O3, X3, Y3, Z3) : 

𝐺[−𝑟 ∗ cos(3𝜔𝑡) , −𝑟 ∗ sin(3𝜔𝑡) , 𝑧2]𝑅2  

𝐻[𝑟 ∗ cos(3𝜔𝑡) , 𝑟 ∗ sin(3𝜔𝑡) , 𝑧3]𝑅3 

Il existe des relations entre les paramètres r, z1, z2, z et ψ. Elles sont : 

𝜓 = 30° 

𝑧 = 𝑧0 − 𝑧1 

𝑧0𝑥 = 𝑟𝑥 ⋅ tan(𝜔𝑡) =
𝑟𝑥

√3
=
0.55605

√3
= 0.321035617 

𝑧2 = 𝑧1 

Les repères locaux ont les paramètres origines et matrices de rotation suivants : 

𝑂1[0, 0, 𝑧0]     𝑀1 (
cos(𝜋) 0 sin(𝜋)
0 1 0

− sin(𝜋) 0 cos(𝜋)
) = (

−1 0 0
0 1 0
0 0 −1

) 

𝑂2 [
−√3

2
𝑧0, 0,

−1

2
𝑧0]     𝑀2 (

cos(2𝜓) 0 sin(2𝜓)
0 1 0

−sin(2𝜓) 0 cos(2𝜓)
) =

(

 

1

2
0

√3

2

0 1 0
−√3

2
0

1

2 )

  

𝑂3 [
√3

2
𝑧0, 0,

−1

2
𝑧0]     𝑀3 (

cos(−2𝜓) 0 sin(−2𝜓)
0 1 0

− sin(−2𝜓) 0 cos(−2𝜓)
) =

(

 

1

2
0

−√3

2

0 1 0
√3

2
0

1

2 )

  

Déterminer les coordonnées des électrinettes F et I : 

Dans le repère local R1 : FR1[r*cos(ωt), r*sin(ωt), z1], AR1[-r*cos(ωt), -r*sin(ωt), z1] 

Dans le repère R absolu : 

𝐹(

𝑥𝑓
𝑦𝑓
𝑧𝑓
1

) = (

−1 0 0 0
0 1 0 0
0 0 −1 𝑧0
0 0 0 1

)(

𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧1
1

) = 𝐹(

−𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧0 − 𝑧1
1

) 

𝐹 (

𝑥𝑓
𝑦𝑓
𝑧𝑓
1

) = 𝐹(

−𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧
1

) 

 

𝐴(

𝑥𝑎
𝑦𝑎
𝑧𝑎
1

) = (

−1 0 0 0
0 1 0 0
0 0 −1 𝑧0
0 0 0 1

)(

−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧1
1

) = 𝐴(

𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧0 − 𝑧1
1

) 
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𝐴(

𝑥𝑎
𝑦𝑎
𝑧𝑎
1

) = 𝐴(

𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧
1

) 

 

Dans le repère local R2 : IR2[-r*cos(ωt), -r*sin(ωt), z2], JR2[r*cos(ωt), r*sin(ωt), z2] 

Dans le repère R : 

𝐼 (

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

) =

(

 
 
 

1

2
0

√3

2

−𝑧0√3

2
0 1 0 0

−√3

2
0

1

2
−
𝑧0
2

0 0 0 1 )

 
 
 

(

−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧2
1

) = 𝐼

(

 
 
 
 
−
𝑟

2
⋅ cos(𝜔𝑡) +

𝑧2√3

2
−
𝑧0√3

2
−𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(𝜔𝑡) +

𝑧2
2
−
𝑧0
2

1 )

 
 
 
 

 

𝐼 (

𝑥𝑖
𝑦𝑖
𝑧𝑖
1

) = 𝐼

(

 
 
 
 
−
𝑟

2
⋅ cos(𝜔𝑡) −

𝑧√3

2
−𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(𝜔𝑡) −

𝑧

2
1 )

 
 
 
 

 

 

𝐽 (

𝑥𝑗
𝑦𝑗
𝑧𝑗
1

) =

(

 
 
 

1

2
0

√3

2

−𝑧0√3

2
0 1 0 0

−√3

2
0

1

2
−
𝑧0
2

0 0 0 1 )

 
 
 

(

𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧2
1

) = 𝐽

(

 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) +

𝑧2√3

2
−
𝑧0√3

2
𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(𝜔𝑡) +

𝑧2
2
−
𝑧0
2

1 )

 
 
 
 

 

𝐽 (

𝑥𝑗
𝑦𝑗
𝑧𝑗
1

) = 𝐽

(

 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) −

𝑧√3

2
𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(𝜔𝑡) −

𝑧

2
1 )

 
 
 
 

 

 

Dans le repère local R3 : GR3[-r*cos(3ωt), -r*sin(3ωt), z3], HR3[r*cos(3ωt), r*sin(3ωt), z3] 

Dans le repère R : 

𝐺 (

𝑥𝑔
𝑦𝑔
𝑧𝑔
1

) =

(

 
 
 

1

2
0

−√3

2

𝑧0√3

2
0 1 0 0

√3

2
0

1

2
−
𝑧0
2

0 0 0 1 )

 
 
 

(

−𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡)
𝑧3
1

) = 𝐺

(

 
 
 
 
−
𝑟

2
⋅ cos(3𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
−𝑟 ⋅ sin(3𝜔𝑡)

−𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2

1 )
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𝐻(

𝑥ℎ
𝑦ℎ
𝑧ℎ
1

) =

(

 
 
 

1

2
0

−√3

2

𝑧0√3

2
0 1 0 0

√3

2
0

1

2
−
𝑧0
2

0 0 0 1 )

 
 
 

(

𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡)
𝑧3
1

) = 𝐻

(

 
 
 
 

𝑟

2
⋅ cos(3𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
𝑟 ⋅ sin(3𝜔𝑡)

𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2

1 )

 
 
 
 

 

Déterminons le vecteur 𝐷𝐹𝐼⃗⃗ ⃗⃗ ⃗⃗  entre les 2 électrinettes F et I : 

𝐷𝐹𝐼 (

𝑥𝑓𝑖
𝑦𝑓𝑖
𝑧𝑓𝑖
) =

(

  
 

𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
−2𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2 )

  
 

 

𝐷𝐹𝐼
2 = [

𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
]

2

+ [2𝑟 ⋅ sin(𝜔𝑡)]2 + [
𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2
]

2

 

Déterminons le vecteur 𝐷𝐹𝐽⃗⃗ ⃗⃗ ⃗⃗   entre les 2 électrinettes F et J : 

𝐷𝐹𝐽 (

𝑥𝑓𝑗
𝑦𝑓𝑗
𝑧𝑓𝑗
) =

(

 
 

3𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
0

−𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2 )

 
 

 

𝐷𝐹𝐽
2 = [

3𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
]

2

+ [
𝑟√3

2
cos(𝜔𝑡) +

3𝑧

2
]

2

 

 

Déterminons le vecteur 𝐷𝐹𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗ entre les 2 électrinettes F et G : 

𝐷𝐹𝐺 (

𝑥𝑓𝑔
𝑦𝑓𝑔
𝑧𝑓𝑔
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
−𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧 )

  
 

 

𝐷𝐹𝐺
2 = [

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
−𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧]

2

 

Déterminons le vecteur 𝐷𝐹𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗ entre les 2 électrinettes F et H : 

𝐷𝐹𝐻 (

𝑥𝑓ℎ
𝑦𝑓ℎ
𝑧𝑓ℎ
) =

(

  
 

𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧 )
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𝐷𝐹𝐻
2 = [

𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧]

2

 

Déterminons le vecteur 𝐷𝐴𝐼⃗⃗ ⃗⃗ ⃗⃗  entre les 2 électrinettes A et I : 

𝐷𝐴𝐼 (

𝑥𝑎𝑖
𝑦𝑎𝑖
𝑧𝑎𝑖
) =

(

 
 

−3𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
0

𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2 )

 
 

 

𝐷𝐴𝐼
2 = [

−3𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
]

2

+ [
𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2
]

2

 

Déterminons le vecteur 𝐷𝐴𝐽⃗⃗ ⃗⃗ ⃗⃗  entre les 2 électrinettes A et J : 

𝐷𝐴𝐽 (

𝑥𝑎𝑗
𝑦𝑎𝑗
𝑧𝑎𝑗
) =

(

  
 

−𝑟

2
cos(𝜔𝑡) −

𝑧√3

2
2𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(𝜔𝑡) −

3𝑧

2 )

  
 

 

𝐷𝐴𝐽
2 = [

𝑟

2
cos(𝜔𝑡) +

𝑧√3

2
]

2

+ [2𝑟 ⋅ sin(𝜔𝑡)]2 + [
𝑟√3

2
cos(𝜔𝑡) +

3𝑧

2
]

2

 

Déterminons le vecteur 𝐷𝐴𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗ entre les 2 électrinettes A et G : 

𝐷𝐴𝐺 (

𝑥𝑎𝑔
𝑦𝑎𝑔
𝑧𝑎𝑔
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
−𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧 )

  
 

 

𝐷𝐴𝐺
2 = [

−𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
]

2

+ [−𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
−𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧]

2

 

Déterminons le vecteur DAH entre les 2 électrinettes A et H : 

𝐷𝐴𝐻 (

𝑥𝑎ℎ
𝑦𝑎ℎ
𝑧𝑎ℎ
) =

(

  
 

𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧 )
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𝐷𝐴𝐻
2 = [

𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
−
𝑧3√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
𝑟√3

2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧]

2

 

Déterminons le vecteur DHA entre les 2 électrinettes H et A : 

𝐷𝐻𝐴 (

𝑥ℎ𝑎
𝑦ℎ𝑎
𝑧ℎ𝑎
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
+ 𝑧 )

  
 

 

𝐷𝐻𝐴
2 = [

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
−𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
+ 𝑧]

2

 

Déterminons le vecteur DHF entre les 2 électrinettes H et F : 

𝐷𝐻𝐹 (

𝑥ℎ𝑓
𝑦ℎ𝑓
𝑧ℎ𝑓
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
+ 𝑧 )

  
 

 

𝐷𝐻𝐹
2 = [

−𝑟

2
cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
]

2

+ [−𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
−𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
+ 𝑧]

2

 

Déterminons le vecteur DHI entre les 2 électrinettes H et I : 

𝐷𝐻𝐼 (

𝑥ℎ𝑖
𝑦ℎ𝑖
𝑧ℎ𝑖
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) −

𝑟

2
⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−
𝑧√3

2
−𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)

𝑟√3

2
cos(𝜔𝑡) −

𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
−
𝑧

2 )

  
 

 

𝐷𝐻𝐼
2 = [

−𝑟

2
cos(3𝜔𝑡) −

𝑟

2
⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−
𝑧√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
𝑟√3

2
cos(𝜔𝑡) −

𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
−
𝑧

2
]

2

 

Déterminons le vecteur DHJ entre les 2 électrinettes H et J : 
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𝐷𝐻𝐽 (

𝑥ℎ𝑗
𝑦ℎ𝑗
𝑧ℎ𝑗
) =

(

  
 

−𝑟

2
cos(3𝜔𝑡) +

𝑟

2
⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−
𝑧√3

2
−𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)

−𝑟√3

2
cos(𝜔𝑡) −

𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
−
𝑧

2 )

  
 

 

𝐷𝐻𝐽
2 = [

−𝑟

2
cos(3𝜔𝑡) +

𝑟

2
⋅ cos(𝜔𝑡) −

𝑧0√3

2
+
𝑧3√3

2
−
𝑧√3

2
]

2

+ [𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)]2

+ [
−𝑟√3

2
cos(𝜔𝑡) −

𝑟√3

2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
−
𝑧

2
]

2

 

 

4.8.3.2 Déterminer la masse de chaque électrinette 

Les électrinettes seront numérotées comme suit : 

1. électrinette F : vitesse v1, la masse 中 F# globale. 

2. électrinette A : vitesse v1, la masse 中 F# globale. 

3. électrinette J : vitesse v1, la masse 中 F# globale. 

4. électrinette I : vitesse v1, la masse 中 F# globale. 

5. électrinette G : vitesse v3, la masse 中 H# globale. 

6. électrinette H : vitesse v3, la masse 中 H# globale. 

La masse globale de l’électrinette F s’exprime par la formule suivante : 

中
𝐹#
=中

𝐹
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐹𝐼 + 𝐸𝑒𝐹𝐺) 

Où : 

• 中 F# : représente la masse inerte globale de l’électrinette F. 

• 中 F : est la charge neutre de l’électrinette F 

• EeFp : est l’énergie potentielle électrique entre l’électrinette F et l’électrinette p ayant un 

signe opposé à celui de l’électrinette F. En plus, la distance entre les électrinettes F et p varie 

entre 0 et d > 0. Avec p = I ou G. 

Pour calculer l’énergie potentielle EeFp, il faut connaitre la moyenne de la distance qui les sépare. En 

négligeant les déplacements des charginettes par rapport au triangle équilatéral, les distances 

s’écrient : 

• 𝐷𝐹𝐼
2 = [

𝑟

2
cos(𝜔𝑡) −

𝑧0√3

2
]
2

+ [2𝑟 ⋅ sin(𝜔𝑡)]2 + [
𝑟√3

2
cos(𝜔𝑡) −

3𝑧0

2
]
2

 

• 𝐷𝐹𝐽
2 = [

3𝑟

2
cos(𝜔𝑡) −

𝑧0√3

2
]
2

+ [
𝑟√3

2
cos(𝜔𝑡) +

3𝑧0

2
]
2

 

• 𝐷𝐹𝐺
2 = [

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
]
2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2 +

[
−𝑟√3

2
cos(3𝜔𝑡) −

3𝑧0

2
]
2

 

• 𝐷𝐹𝐻
2 = [

𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) +

𝑧0√3

2
]
2

+ [𝑟 ⋅ sin(3𝜔𝑡) − 𝑟 ⋅ sin(𝜔𝑡)]2 +

[
𝑟√3

2
cos(3𝜔𝑡) −

3𝑧0

2
]
2
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En tenant compte de la valeur de z0 : 

• 𝐷𝐹𝐼 = 𝑟 ⋅ √[cos(𝜔𝑡) − 1]
2 + 4[sin(𝜔𝑡)]2 

• 𝐷𝐹𝐺 =
𝑟

2
√[1 − cos(3𝜔𝑡) + 2 cos(𝜔𝑡)]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[cos(3𝜔𝑡) + 1]2 

En traçant les courbes sur une période complète de 2π à l’aide de Simulink (fichier : 

Courbe_distance_D_FI.slx) : 

• 𝑓𝐹𝐼 = √[cos(𝜔𝑡) − 1]
2 + 4[sin(𝜔𝑡)]2 

 

Figure 20 - Distance moyenne FI 

DFI = r*fFI = 0.55605*10-15*1.757 = 0.97698*10-15 

 

• 𝑓𝐹𝐺 =
1

2
√[1 − cos(3𝜔𝑡) + 2 cos(𝜔𝑡)]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[cos(3𝜔𝑡) + 1]2 

 

Figure 21 - Distance moyenne FG 

DFG = r*fFG = 0.55605*10-15*1.65 = 0.9174825*10-15 

(fichier : Courbe_distance_D_FG.slx) 

La masse globale de l’électrinette F devient : 
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中
𝐹#
=中

𝐹
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 [
中
𝐹0
中
𝐼0

𝐷𝐹𝐼
+
中
𝐹0
中
𝐺0

𝐷𝐹𝐺
] 

Avec la vitesse orbitale des charginettes très inférieure à c, 中 F =中 F0. Donc on a : 

中
𝐹#
=中

𝐹0
+ 
𝑘𝑒𝑒

2中
𝐹0

2𝑐2中
𝑟𝑒𝑓

2 [
中
𝐹0

𝐷𝐹𝐼
+
中
𝐻0

𝐷𝐹𝐺
] 

中
𝐹#
=中

𝐹0
+ 
𝑘𝑒𝑒

2中
𝐹0

2𝑐2中
𝑟𝑒𝑓

2
𝑟
[
中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
] 

中
𝐹#𝑥

= 0.72 + 
8.98755 ∗ 1.6021762 ∗ 0.72 ∗ 10

2 ∗ 2.9975242 ∗ 9.1093820
2 ∗ 0.55605

[
0.72

1.757
+
6.478

1.65
] 

中
𝐹#𝑥

= 0.72 +  0.200330582[0.409789 + 3.926061] 

中
𝐹#𝑥

= 1.588603 

 

Par symétrie, 中 A# =中 I# =中 J# =中 F#. 

La masse globale de l’électrinette H s’exprime par la formule suivante : 

中
𝐻#
=中

𝐻
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐻𝐴 + 𝐸𝑒𝐻𝐼) 

Où : 

• 中 H# : représente la masse inerte globale de l’électrinette H. 

• 中 H : est la charge neutre de l’électrinette H 

• EeHp : est l’énergie potentielle électrique entre l’électrinette H et l’électrinette p. Avec p = 

A ou I. 

Pour calculer l’énergie potentielle EeHp, il faut connaitre la moyenne de la distance qui les sépare. En 

négligeant les déplacements des charginettes par rapport au triangle équilatéral, les distances 

s’écrient : 

• 𝐷𝐻𝐴
2 = [

−𝑟

2
cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡) −

𝑧0√3

2
]
2

+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2 +

[
−𝑟√3

2
cos(3𝜔𝑡) +

3𝑧0

2
]
2

 

• 𝐷𝐻𝐼
2 = [

−𝑟

2
cos(3𝜔𝑡) −

𝑟

2
⋅ cos(𝜔𝑡) − 𝑧0√3]

2
+ [𝑟 ⋅ sin(3𝜔𝑡) + 𝑟 ⋅ sin(𝜔𝑡)]2 +

[
𝑟√3

2
cos(𝜔𝑡) −

𝑟√3

2
cos(3𝜔𝑡)]

2

 

 

En tenant compte de la valeur de z0 : 

• 𝐷𝐻𝐴 =
𝑟

2
√[cos(3𝜔𝑡) − 2 cos(𝜔𝑡) + 1]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[1 − cos(3𝜔𝑡)]2 
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• 𝐷𝐻𝐼 =
𝑟

2
⋅

√[cos(3𝜔𝑡) + cos(𝜔𝑡) + 2]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[cos(𝜔𝑡) − cos(3𝜔𝑡)]2 

En traçant les courbes sur une période complète de 2π  à l’aide de Simulink (fichier : 

Courbe_distance_D_HA.slx) : 

• 𝑓𝐻𝐴 =
1

2
√[cos(3𝜔𝑡) − 2 cos(𝜔𝑡) + 1]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[1 − cos(3𝜔𝑡)]2 

 

Figure 22 - Distance moyenne HA 

DHA = r*fHA = 0.55605*10-15*1.65 = 0.9174825*10-15 

 

• 𝐷𝐻𝐼 =
1

2
⋅

√[cos(3𝜔𝑡) + cos(𝜔𝑡) + 2]2 + 4[sin(3𝜔𝑡) + sin(𝜔𝑡)]2 + 3[cos(𝜔𝑡) − cos(3𝜔𝑡)]2 

 

Figure 23 - Distance moyenne HI 

DHI = r*f2HI = 0.55605*10-15*1.65 = 0.9174825*10-15 

(fichier : Courbe_distance_D_HI.slx) 

La masse globale de l’électrinette H devient : 
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中
𝐻#
=中

𝐻
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 [
中
𝐻0

中
𝐴0

𝐷𝐻𝐴
+
中
𝐻0

中
𝐼0

𝐷𝐻𝐼
] 

Avec la vitesse orbitale des charginettes très inférieure à c, 中 H =中 H0. Donc on a : 

中
𝐻#
=中

𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0

2𝑐2中
𝑟𝑒𝑓

2
𝑟
[
中
𝐴0

𝑓𝐻𝐴
+
中
𝐼0

𝑓𝐻𝐼
] 

中
𝐻#𝑥

= 6.478 + 
8.98755 ∗ 1.6021762 ∗ 6.478 ∗ 10

2 ∗ 2.9975242 ∗ 9.1093820
2 ∗ 0.55605

[
0.72

1.65
+
0.72

1.65
] 

中
𝐻#𝑥

= 6.478 +  3.6048375[0.872727273] 

中
𝐻#𝑥

= 9.62404 

 

Par symétrie, 中 G# =中 H#. 

(中 H0x, v3x, rx) = (6.478, 9.0, 0.55605). 

(中 F0x, v1x, rx) = (0.72, 3.0, 0.55605). 

 

中
𝐹#𝑥

= 1.588603 

Les électrinettes de la chrominette sont : 

• 4 * 中 F#x = 4 * 1.588603 = 6.354413 

• 2 * 中 H#x = 2 * 9.6404 = 19.24808 

Ce qui donne la masse de la chrominette : 

中 chromx = 6.354412 + 19.24808 = 25.6025 

中 chrom = 25.6025 * 10-31kg. 

中 chrom = 25.6025 * 10-31kg * c2 / 1,602 176 634 × 10−19 J. 

中 chrom = 143.581077215 * 104 eV = 1.435811 MeV. 

中 quark = 1.435811 MeV + 511 keV = 1.946811 MeV. 

L’influence d’une électrinette au sein de la chrominette : 

Dans le cas d’un quark, il y a une électrinette placée au milieu de la chrominette. Comme la 

force électrique est grandement diminuée par la neutralisation des charginettes, le couplage 

entre cette électrinette et la chrominette par la force électrique est relativement faible. Ce 

qui explique l’instabilité des quarks. 
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4.8.3.3 Déterminer les interactions électriques entre les électrinettes 

Pour modéliser les interactions entre électrinettes de la chrominette, les propriétés suivantes seront 

utilisées : 

• Les charginettes se comportent comme des disques solides avec deux électrinettes qui 

tournent sur la périphérie. 

• Les champs électriques générés par les électrinettes sont atténués comme décrit dans le 

paragraphe charginette. 

• Les interactions entre les électrinettes sont doublement atténuées, puisque de chaque côté, 

leurs champs électriques le sont. Le coefficient d’atténuation entre deux électrinettes 1 et 2 

inter charginettes s’écrit donc comme suit : 

𝑘𝑛12 =
103

𝑓1
⋅
103

𝑓2
=
106

𝑓1 ⋅ 𝑓2
 

Où : 

fi représente la fréquence de rotation de la charginette i. 

• Il y a une particularité quand deux électrinettes se rapprochent de très près. En effet, la 

neutralisation dépend de la distance d’interaction. On se propose d’utiliser la formule 

suivante : 

𝑘𝑛12 = 10
−
𝐷
𝑟
⋅100 +

106

𝑓1 ⋅ 𝑓2
 

Où : 

1. kn12 : est le coefficient d’atténuation de l’interaction électrique entre une 

électrinette A de la charginette 1 de fréquence n1 et une électrinette B de la 

charginette 2 de fréquence n2. 

2. D : est la distance entre l’électrinette A et l’électrinette B. 

3. r : est le rayon des charginettes 1 et 2 qui ont le même rayon. 

Application numérique : 

• r = 0.55605 * 10-15 m 

• v1 = 3*102 m/s 

• v3 = 9*102 m/s 

• f1 = v1/r = 5,395198*1017. Pour l’atténuation, la valeur retenue sera 1011. 

• f3 = v3/r = 1,618559*1018. Pour l’atténuation, la valeur retenue sera 1011. 

• 𝑘𝑛13 = 10
−
𝐷

𝑟
⋅100 + 10−22 

 

4.8.3.4 Etablir les équations dynamiques régissant chaque électrinette 

Au sein de la chrominette, on suppose que chaque charginette se déplace le long de son axe de 

symétrie. Il s’agit de l’axe O1Z1 pour la charginette AF, de l’axe O2Z2 pour la charginette IJ, de l’axe 

O3Z3 pour la charginette GH. Par symétrie, les électrinettes A, F, I et J obéissent à une équation. Les 

électrinettes G et H obéissent à une autre équation. 

Projeter l’équation dynamique des électrinettes F et A sur l’axe O1Z1 : 

𝑚𝐹𝐴 ⋅ 𝑧1̈ =力
𝑒𝑧1

 

Équation 24 - équation différentielle 1 de la chrominette 
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Où : 

• mFA : est la masse globale de l’électrinette F + la masse globale de l’électrinette A. Pour 

une vitesse linéaire très inférieure à c, mF = 中 F# et mFA = 中 A#. 

• 力 ez1 : est la force électrique subie par l’électrinette F + la force électrique subie par 

l’électrinette A sur l’axe O1Z1. 

La force 力
𝐹

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette F est la suivante : 

力
𝐹

⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐹𝐼𝑘𝑒𝑞𝐹𝑞𝐼𝐷𝐹𝐼⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐹𝐼
3 + 𝛽3

−
𝑘𝑛𝐹𝐽𝑘𝑒𝑞𝐹𝑞𝐽𝐷𝐹𝐽⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐽
3 + 𝛽3

+
𝑘𝑛𝐹𝐺𝑘𝑒𝑞𝐹𝑞𝐺𝐷𝐹𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐺
3 + 𝛽3

−
𝑘𝑛𝐹𝐻𝑘𝑒𝑞𝐹𝑞𝐻𝐷𝐹𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐻
3 + 𝛽3

 

La force 力
𝐴

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette A est la suivante : 

力
𝐴

⃗⃗ ⃗⃗ ⃗⃗  
= −

𝑘𝑛𝐴𝐼𝑘𝑒𝑞𝐴𝑞𝐼𝐷𝐴𝐼⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐴𝐼
3 + 𝛽3

+
𝑘𝑛𝐴𝐽𝑘𝑒𝑞𝐴𝑞𝐽𝐷𝐴𝐽⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐴𝐽
3 + 𝛽3

−
𝑘𝑛𝐴𝐺𝑘𝑒𝑞𝐴𝑞𝐺𝐷𝐴𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐺
3 + 𝛽3

+
𝑘𝑛𝐴𝐻𝑘𝑒𝑞𝐴𝑞𝐻𝐷𝐴𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐻
3 + 𝛽3

 

La force 力
𝐹𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 subie par la charginette FA est la suivante : 

力
𝐹𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=  力

𝐹

⃗⃗ ⃗⃗ ⃗⃗  
+力

𝐴

⃗⃗ ⃗⃗ ⃗⃗  
  

En projetant sur l’axe O1Z1 : qui a pour vecteur : 

𝑂1𝑂⃗⃗⃗⃗⃗⃗⃗⃗ 

‖𝑂1𝑂⃗⃗⃗⃗⃗⃗⃗⃗ ‖
= (

0
0
−1
) 

Sachant que l’axe OZ est colinéaire à l’axe O1Z1, on projette sur l’axe OZ : 

力
𝐹𝑧
=

𝑘𝑛𝐹𝐼𝑘𝑒𝑞𝐹𝑞𝐼 [
𝑟√3
2 cos(𝜔𝑡) −

3𝑧
2 ]

𝐷𝐹𝐼
3 + 𝛽3

+

𝑘𝑛𝐹𝐽𝑘𝑒𝑞𝐹𝑞𝐽 [
𝑟√3
2 cos(𝜔𝑡) +

3𝑧
2 ]

𝐷𝐹𝐽
3 + 𝛽3

−

𝑘𝑛𝐹𝐺𝑘𝑒𝑞𝐹𝑞𝐺 [
𝑟√3
2 cos(3𝜔𝑡) +

𝑧0
2 −

𝑧3
2 + 𝑧]

𝐷𝐹𝐺
3 + 𝛽3

−

𝑘𝑛𝐹𝐻𝑘𝑒𝑞𝐹𝑞𝐻 [
𝑟√3
2 cos(3𝜔𝑡) −

𝑧0
2 +

𝑧3
2 − 𝑧]

𝐷𝐹𝐻
3 + 𝛽3

−

𝑘𝑛𝐴𝐼𝑘𝑒𝑞𝐴𝑞𝐼 [
𝑟√3
2 cos(𝜔𝑡) −

3𝑧
2 ]

𝐷𝐴𝐼
3 + 𝛽3

−

𝑘𝑛𝐴𝐽𝑘𝑒𝑞𝐴𝑞𝐽 [
𝑟√3
2 cos(𝜔𝑡) +

3𝑧
2 ]

𝐷𝐴𝐽
3 + 𝛽3

+

𝑘𝑛𝐴𝐺𝑘𝑒𝑞𝐴𝑞𝐺 [
𝑟√3
2 cos(3𝜔𝑡) +

𝑧0
2 −

𝑧3
2 + 𝑧]

𝐷𝐴𝐺
3 + 𝛽3

+

𝑘𝑛𝐴𝐻𝑘𝑒𝑞𝐴𝑞𝐻 [
𝑟√3
2 cos(3𝜔𝑡) −

𝑧0
2 +

𝑧3
2 − 𝑧]

𝐷𝐴𝐻
3 + 𝛽3

 

 

En faisant un changement d’échelle, l’équation devient : 
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中
𝐹𝐴#𝑥

⋅ 𝑧𝑥̈ =

𝑘𝑛𝐹𝐼𝑥𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐼𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) −

3𝑧𝑥
2
]

𝐷𝐹𝐼𝑥
3 + 𝛽𝑥

3 +

𝑘𝑛𝐹𝐽𝑥𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐽𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) +

3𝑧𝑥
2
]

𝐷𝐹𝐽𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐺𝑥𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐺𝑥 [
𝑟𝑥√3
2
cos(3𝜔𝑥𝑡𝑥) +

𝑧0𝑥
2
−
𝑧3𝑥
2
+ 𝑧𝑥]

𝐷𝐹𝐺𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐻𝑥𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐻𝑥 [
𝑟𝑥√3
2
cos(3𝜔𝑥𝑡𝑥) −

𝑧0𝑥
2
+
𝑧3𝑥
2
− 𝑧𝑥]

𝐷𝐹𝐻𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐴𝐼𝑥𝑘𝑒𝑥𝑞𝐴𝑥𝑞𝐼𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) −

3𝑧𝑥
2
]

𝐷𝐴𝐼𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐴𝐽𝑥𝑘𝑒𝑥𝑞𝐴𝑥𝑞𝐽𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) +

3𝑧𝑥
2
]

𝐷𝐴𝐽𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐺𝑥𝑘𝑒𝑥𝑞𝐴𝑥𝑞𝐺𝑥 [
𝑟𝑥√3
2
cos(3𝜔𝑥𝑡𝑥) +

𝑧0𝑥
2
−
𝑧3𝑥
2
+ 𝑧𝑥]

𝐷𝐴𝐺𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐻𝑥𝑘𝑒𝑥𝑞𝐴𝑥𝑞𝐻𝑥 [
𝑟𝑥√3
2 cos(3𝜔𝑥𝑡𝑥) −

𝑧0𝑥
2 +

𝑧3𝑥
2 − 𝑧𝑥]

𝐷𝐴𝐻𝑥
3 + 𝛽𝑥

3  

 

z’’ = zx’’ * 1031 m s-2. 

中 F# =中 F#x * 10-31 kg = 1,588603 * 10-31 kg 

中 FA# =中 F# + 中 A# = 2 中 F# = 中 FA#x * 10-31 kg = 3,177207 * 10-31 kg 

r = rx * 10-15 m = 0,55605 * 10-15 m 

β = βx * 10-15 m = 10-3 * 10-15 m 

z = zx * 10-15 m 

e = 1,602 176 565 * 10−19 C = ex * 10−19 C 

ke = 8,987 551 787 368 176 * 109 kg-1 m-1 A-2 = kex * 109 kg-1 m-1 A-2  

v = vx * 108 m/s = (3*10-6) * 108 m/s 

ω = v / r = ωx*1023 radian s-1. = (5,395198274*10-6)*1023 radian s-1. = 2πf = 2π/T 

T = 2π/ ω = 2π r / v = tx * 10-23 s = (1,164588397*106) * 10-23 s 

𝑞?𝑥 =
中
?0𝑥

中
𝑟𝑒𝑓𝑥

⋅ 𝑒𝑥 

Avec ici : ? = F, I, J, G, H. Sachant que 中 F0 =中 I0 =中 J0, et 中 G0 =中 H0 : 
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• 𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐼𝑥 = 𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐽𝑥 = 𝑘𝑒𝑥
中
𝐹0𝑥

中
𝑟𝑒𝑓𝑥

⋅
中
𝐹0𝑥

中
𝑟𝑒𝑓𝑥

⋅ 𝑒𝑥
2 = 𝑘𝑒𝑥 ⋅

中
𝐹0𝑥

2

中
𝑟𝑒𝑓𝑥

2 ⋅ 𝑒𝑥
2 = 𝑘11𝑥 ⋅ 𝑒𝑥

2 

• 𝑘11 = 8.987551787 ⋅ 10
9 0.722

9.1093822
= 0.05614726 ⋅ 109 = 𝑘11𝑥 ⋅ 10

9 

• 𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐺𝑥 = 𝑘𝑒𝑥𝑞𝐹𝑥𝑞𝐻𝑥 = 𝑘𝑒𝑥
中
𝐹0𝑥

中
𝑟𝑒𝑓𝑥

⋅
中
𝐻0𝑥

中
𝑟𝑒𝑓𝑥

⋅ 𝑒𝑥
2 = 𝑘16𝑥 ⋅ 𝑒𝑥

2 

• 𝑘16 = 8.987551787 ⋅ 10
9 0.72⋅6.478

9.1093822
= 0.505169378 ⋅ 109 = 𝑘16𝑥 ⋅ 10

9 

 

𝑘𝑛𝐹? = 10
−
𝐷𝐹?
𝑟
⋅100 + 𝑘𝑛0𝐹?𝑥 ⋅ 10

+1 = 10−
𝐷𝐹?
𝑟
⋅100 +

103

𝑓𝐹
⋅
103

𝑓?
⋅ 10+1 

Comme les valeurs de fréquence sont supérieures à la valeur de saturation, on a : 

𝑘𝑛𝐹? = 10
−
𝐷𝐹?
𝑟
⋅100 + 10−11 ⋅ 10−11 ⋅ 101 

Soit : 

𝑘𝑛𝐹? = 10
−
𝐷𝐹?
𝑟
⋅100 + 10−21 

 

Projeter l’équation dynamique de l’électrinette H sur l’axe O3Z3 : 

𝑚ℎ ⋅ 𝑧3̈ =力
𝑒𝑧3

 

Équation 25 - équation différentielle 2 de la chrominette 

Où : 

• mh : est la masse globale de l’électrinette H. Pour une vitesse linéaire très inférieure à c, 

mh = 中 H# 

• 力 ez3 : est la force électrique subie par l’électrinette H sur l’axe O3Z3. 

La force 力
ℎ

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette H est la suivante : 

力
ℎ

⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐻𝐴𝑘𝑒𝑞𝐻𝑞𝐴𝐷𝐻𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐴
3 + 𝛽3

−
𝑘𝑛𝐻𝐹𝑘𝑒𝑞𝐻𝑞𝐹𝐷𝐻𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐹
3 + 𝛽3

+
𝑘𝑛𝐻𝐼𝑘𝑒𝑞𝐻𝑞𝐼𝐷𝐻𝐼⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻𝐼
3 + 𝛽3

−
𝑘𝑛𝐻𝐽𝑘𝑒𝑞𝐻𝑞𝐽𝐷𝐻𝐽⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐽
3 + 𝛽3

 

En projetant sur l’axe O3Z3 qui a pour vecteur : 

𝑂3𝑂⃗⃗⃗⃗⃗⃗ ⃗⃗ 

‖𝑂3𝑂⃗⃗⃗⃗⃗⃗ ⃗⃗ ‖
=

(

 
 

−√3

2
0
1

2 )
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力
ℎ𝑧3

=

𝑘𝑛𝐻𝐴𝑘𝑒𝑞𝐻𝑞𝐴 [𝑧0 − 𝑧3 −
𝑟√3
2
cos(𝜔𝑡) +

𝑧
2
]

𝐷𝐻𝐴
3 + 𝛽3

−

𝑘𝑛𝐻𝐹𝑘𝑒𝑞𝐻𝑞𝐹 [𝑧0 − 𝑧3 +
𝑟√3
2
cos(𝜔𝑡) +

𝑧
2
]

𝐷𝐻𝐹
3 + 𝛽3

+

𝑘𝑛𝐻𝐼𝑘𝑒𝑞𝐻𝑞𝐼 [
𝑟√3
2 cos(𝜔𝑡) +

𝑧
2 + 𝑧0 − 𝑧3]

𝐷𝐻𝐼
3 + 𝛽3

−

𝑘𝑛𝐻𝐽𝑘𝑒𝑞𝐻𝑞𝐽 [−
𝑟√3
2
cos(𝜔𝑡) +

𝑧
2
+ 𝑧0 − 𝑧3]

𝐷𝐻𝐽
3 + 𝛽3

 

 

En faisant un changement d’échelle, l’équation devient : 

中
𝐻#
⋅ 𝑧3𝑥̈ =

𝑘𝑛𝐻𝐴𝑥𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐴𝑥 [−
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) + 𝑧0𝑥 − 𝑧3𝑥 +

𝑧𝑥
2
]

𝐷𝐻𝐴𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐻𝐹𝑥𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐹𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) + 𝑧0𝑥 − 𝑧3𝑥 +

𝑧𝑥
2
]

𝐷𝐻𝐹𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐻𝐼𝑥𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐼𝑥 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) +

𝑧𝑥
2
+ 𝑧0𝑥 − 𝑧3𝑥]

𝐷𝐻𝐼𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐻𝐽𝑥𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐽𝑥 [−
𝑟𝑥√3
2 cos(𝜔𝑥𝑡𝑥) +

𝑧𝑥
2 + 𝑧0𝑥 − 𝑧3𝑥]

𝐷𝐻𝐽𝑥
3 + 𝛽𝑥

3  

Avec : 

𝑞?𝑥 =
中
?0𝑥

中
𝑟𝑒𝑓𝑥

⋅ 𝑒𝑥 

Avec ici : ? = F, A, I, J, H. Sachant que 中 F0 =中 A0 =中 I0 =中 J0, et 中 G0 =中 H0 : 

• 𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐴𝑥 = 𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐹𝑥 = 𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐼𝑥 = 𝑘𝑒𝑥𝑞𝐻𝑥𝑞𝐽𝑥 = 𝑘𝑒𝑥
中
𝐻0𝑥

中
𝑟𝑒𝑓𝑥

⋅
中
𝐹0𝑥

中
𝑟𝑒𝑓𝑥

= 𝑘16𝑥 

 

𝑘𝑛𝐻? = 10
−
𝐷𝐻?
𝑟
⋅100 + 10−21 

 

 

4.8.3.5 Résoudre les équations différentielles à l’aide de l’outil progiciel Matlab-Simulink 

En résolvant les équations avec Simulink, on obtient les courbes z (bleu) et z3 (jaune) : 
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Figure 24 - Oscillation des charginettes de chrominette 

On voit que l’amplitude d’oscillation de zx est 1,672*10-10. Le rapport avec le rayon rx est 3,00*10-10. 

L’amplitude d’oscillation de z3x est 6,373*10-11. Le rapport avec le rayon rx est 1,15*10-10. 

Plus de détails sont donnés en : Appendice A.2. 

 

4.8.4 Stabilité des nucléonettes 品 b 
Le rayon de charge pour le proton Rp est mesuré en laboratoire. Il est situé dans la fourchette 

suivante : 

• 0,82 * 10-15 m < Rp < 0,88 * 10-15 m 

La valeur privilégiée est : 0,84 * 10-15 m. Or la structure du proton peut être schématisée par la figure 

suivante : 

 

Figure 25 - Rayon du proton 

q- q+ 

d = 2r 

Rp = 2r cos(30°) 
       + r tan(30°) 
       + Δ 

T 

O1 

P 

Q 

S 

M 

W 

Δ 

O 
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En admettant que le rayon de charge corresponde au rayon maximal d’un proton. On a : 

• Rp = 2 r cos(30°) + r tan(30°) + Δ 

On en déduit que le rayon r des cercles contenant les Charginettes composant le proton : 

𝑟 =
𝑅𝑝 − Δ

2 ⋅ cos(30°) + tan(30°)
=
𝑅𝑝 − Δ

√3 +
1

√3

 

La valeur de Δ est négligeable devant r. D’où : r = 0,36373067 *10-15 m arrondi à 0,36373 *10-15 m. 

Cette valeur du rayon des charginette sera aussi utilisée pour les charginettes composant la 

nucléonette. 

Pour établir le comportement dynamique des 9 charginettes au sein de la nucléonette, on va 

procéder en 5 étapes suivantes : 

1. Déterminer les coordonnées des électrinettes et les distances entre elles 

2. Déterminer la masse de chaque électrinette 

3. Déterminer les interactions électriques entre les électrinettes 

4. Etablir les équations dynamiques régissant chaque électrinette 

5. Résoudre les équations différentielles à l’aide de l’outil progiciel Matlab-Simulink 

 

4.8.4.1 Positionnement entre les 3 chrominettes 

En examinant les courbes des amplitudes z et z3, la question de cohérence se pose. En effet, la 

position la plus éloignée de z par rapport à la position de z minimal se trouve à l’angle α proche de π. 

Mais la position idéale est pour α = π/2. Le problème est qu’à cette position, la vitesse de la 

charginette AF n’est pas nulle. Il faut donc envisager l’arrêt de la charginette AF à la position α = π/2. 

Ceci est une contrainte. En effet, si la position était différente, la structure de la nucléonette ne 

tiendrait plus. Cette contrainte est valable pour les 3 charginettes du milieu. 

 

4.8.4.2 Déterminer les coordonnées des électrinettes et les distances entre elles 

Établissons les relations entre les coordonnées globales et locales des électrinettes. 

Un repère global et un repère local par chrominette externe sont illustrés par le schéma suivant : 
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Figure 26 - Structure de nucléonette 

On reprend les repères R, R1, R2 et R3 du paragraphe stabilité de la chrominette. On ajoute les 

repères R4(O4, X4, Y4, Z4), R5(O5, X5, Y5, Z5), R6(O6, X6, Y6, Z6) et R7(O7, X7, Y7, Z7). 

Δ représente la distance sur l’axe OZ l’amplitude de la charginette AF. Δ6 représente la distance sur 

l’axe O3Z3 l’amplitude de la charginette GH. 

Déterminons les coordonnées des origines de ces 4 nouveaux repères. Pour les coordonnées de O4 et 

O5, on s’aide du schéma suivant : 

 

Figure 27 - Vue axiale de la chrominette ABCDEF 

Dans le repère R1, les coordonnées de O4 et O5, sont : 

q- q+ 
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𝑂4 (

0
−𝑟 ⋅ sin(30°)

−Δ − 𝑟 ⋅ cos(300)

) = 𝑂4

(

 
 

0

−
𝑟

2

−Δ − 𝑟 ⋅
√3

2 )

 
 

 

𝑂5 (

0
𝑟 ⋅ sin(30°)

−Δ − 𝑟 ⋅ cos(300)

) = 𝑂5

(

 
 

0
𝑟

2

−Δ − 𝑟 ⋅
√3

2 )

 
 

 

Après les coordonnées des origines des repères locaux, il reste à déterminer leurs matrices. 

Partant du repère R1, le repère R4(O4, X4, Y4, Z4) s’obtient par une rotation de 2π/3 autour de l’axe 

O1X1, puis un déplacement vers O4. Il faut rajouter au préalable la rotation de R1 dans le repère R. 

𝑀4𝑅1

(

 
 
 

1 0 0 0

0 cos (
2𝜋

3
) − sin (

2𝜋

3
) −

𝑟

2

0 sin (
2𝜋

3
) cos (

2𝜋

3
) −∆ −

√3

2
𝑟

0 0 0 1 )

 
 
 
=

(

 
 
 

1 0 0 0

0 −
1

2
−
√3

2
−
𝑟

2

0
√3

2
−
1

2
−∆ −

√3

2
𝑟

0 0 0 1 )

 
 
 

 

𝑀1(

cos(𝜋) 0 sin(𝜋) 0
0 1 0 0

− sin(𝜋) 0 cos(𝜋) 𝑧0
0 0 0 1

) = (

−1 0 0 0
0 1 0 0
0 0 −1 𝑧0
0 0 0 1

) 

𝑀4 = 𝑀1⨂𝑀4𝑅1 = (

−1 0 0 0
0 1 0 0
0 0 −1 𝑧0
0 0 0 1

)

(

 
 
 

1 0 0 0

0 −
1

2

−√3

2
−
𝑟

2

0
√3

2
−
1

2
−∆ −

√3

2
𝑟

0 0 0 1 )

 
 
 

=

(

 
 
 

−1 0 0 0

0 −
1

2

−√3

2
−
𝑟

2

0 −
√3

2

1

2
∆ +

√3

2
𝑟 + 𝑧0

0 0 0 1 )

 
 
 

 

Avec : 

𝑧0 =
𝑟

√3
=
0.36373

√3
= 0.21 

Partant du repère R1, le repère R5(O5, X5, Y5, Z5) s’obtient par une rotation de -2π/3 autour de l’axe 

OX, puis un déplacement vers O5. Il faut rajouter au préalable la rotation de R1 dans le repère R. 

𝑀5𝑅1

(

 
 
 

1 0 0 0

0 cos (−
2𝜋

3
) − sin (−

2𝜋

3
)

𝑟

2

0 sin (−
2𝜋

3
) cos (−

2𝜋

3
) −Δ − 𝑟 ⋅

√3

2
0 0 0 1 )

 
 
 
=

(

 
 
 

1 0 0 0

0 −
1

2

√3

2

𝑟

2

0 −
√3

2
−
1

2
−Δ −

√3

2
𝑟

0 0 0 1 )
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𝑀5 = 𝑀1⨂𝑀5𝑅1 = (

−1 0 0 0
0 1 0 0
0 0 −1 𝑧0
0 0 0 1

)

(

 
 
 

1 0 0 0

0 −
1

2

√3

2

𝑟

2

0 −
√3

2
−
1

2
−Δ −

√3

2
𝑟

0 0 0 1 )

 
 
 

=

(

 
 
 

−1 0 0 0

0 −
1

2

√3

2

𝑟

2

0
√3

2

1

2
Δ +

√3

2
𝑟 + 𝑧0

0 0 0 1 )

 
 
 

 

 

Pour les coordonnées de O6 et O7, on s’aide du schéma suivant : 

 

Figure 28 - Vue axiale de la chrominette GHΓΣΩΦ 

Dans le repère R3, les coordonnées de O6 et O7, sont : 

𝑂6 (

0
−𝑟 ⋅ sin(30°)

−Δ6 − 𝑟 ⋅ cos(30
0)
) = 𝑂6

(

 
 

0

−
𝑟

2

−Δ6 − 𝑟 ⋅
√3

2 )

 
 

 

𝑂7 (

0
𝑟 ⋅ sin(30°)

−Δ6 − 𝑟 ⋅ cos(30
0)
) = 𝑂7

(

 
 

0
𝑟

2

−Δ6 − 𝑟 ⋅
√3

2 )

 
 

 

Partant du repère R3, le repère R6(O6, X6, Y6, Z6) s’obtient par une rotation de  2π/3 autour de l’axe 

O3X3, puis un déplacement vers O6. Il faut rajouter au préalable la rotation de R3 dans le repère R. 

q- q+ 
K 

N 

L 

Γ 

Σ 

Φ 

O3 

Y 

Δ6 
Z 

Ω 

O 

Y3 

Z3 X 

Z6 

O6 

Y6 

O7 

Z7 

Y7 H 

G 
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𝑀6𝑅3

(

 
 
 

1 0 0 0

0 cos (
2𝜋

3
) − sin (

2𝜋

3
) −

𝑟

2

0 sin (
2𝜋

3
) cos (

2𝜋

3
) −Δ6 −

√3

2
𝑟

0 0 0 1 )

 
 
 
=

(

 
 
 

1 0 0 0

0 −
1

2

−√3

2
−
𝑟

2

0
√3

2
−
1

2
−Δ6 −

√3

2
𝑟

0 0 0 1 )

 
 
 

 

𝑀3

(

 
 
 
cos (

−𝜋

3
) 0 sin (

−𝜋

3
)

√3

2
𝑧0

0 1 0 0

−sin (
−𝜋

3
) 0 cos (

−𝜋

3
) −

1

2
𝑧0

0 0 0 1 )

 
 
 
=

(

 
 
 

1

2
0

−√3

2

√3

2
𝑧0

0 1 0 0

√3

2
0

1

2
−
1

2
𝑧0

0 0 0 1 )

 
 
 

 

𝑀6 = 𝑀3⨂𝑀6𝑅3 =

(

 
 
 

1

2
0

−√3

2

√3

2
𝑧0

0 1 0 0

√3

2
0

1

2
−
1

2
𝑧0

0 0 0 1 )

 
 
 

(

 
 
 

1 0 0 0

0 −
1

2

−√3

2
−
𝑟

2

0
√3

2
−
1

2
−Δ6 −

√3

2
𝑟

0 0 0 1 )

 
 
 

=

(

 
 
 
 
 

1

2

−3

4

√3

4

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0 −
1

2

−√3

2
−
𝑟

2

√3

2

√3

4
−
1

4
−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

0 0 0 1 )

 
 
 
 
 

 

 

 

Partant du repère R3, le repère R7(O7, X7, Y7, Z7) s’obtient par une rotation de - 2π/3 autour de l’axe 

O3X3, puis un déplacement vers O7. Il faut rajouter au préalable la rotation de R3 dans le repère R. 

𝑀7𝑅3

(

 
 
 

1 0 0 0

0 cos (
−2𝜋

3
) − sin (

−2𝜋

3
)

𝑟

2

0 sin (
−2𝜋

3
) cos (

−2𝜋

3
) −Δ6 −

√3

2
𝑟

0 0 0 1 )

 
 
 
=

(

 
 
 

1 0 0 0

0 −
1

2

√3

2

𝑟

2

0
−√3

2
−
1

2
−Δ6 −

√3

2
𝑟

0 0 0 1 )
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𝑀7 = 𝑀3⨂𝑀7𝑅3 =

(

 
 
 

1

2
0

−√3

2

√3

2
𝑧0

0 1 0 0

√3

2
0

1

2
−
1

2
𝑧0

0 0 0 1 )

 
 
 

(

 
 
 

1 0 0 0

0 −
1

2

√3

2

𝑟

2

0
−√3

2
−
1

2
−Δ6 −

√3

2
𝑟

0 0 0 1 )

 
 
 

=

(

 
 
 
 
 

1

2

3

4

√3

4

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0 −
1

2

√3

2

𝑟

2

√3

2

−√3

4
−
1

4
−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

0 0 0 1 )

 
 
 
 
 

 

 

Déterminer les coordonnées des électrinettes B et C dans le repère local R4 : 

𝐵𝑅4 (
−𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡)
𝑧4

) 

𝐶𝑅4 (
𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡)
𝑧4

) 

Déterminer les coordonnées des électrinettes B et C dans le repère global R : 

𝐵(

𝑥𝑏
𝑦𝑏
𝑧𝑏
1

) =

(

 
 
 

−1 0 0 0

0 −
1

2
−
√3

2

−𝑟

2

0 −
√3

2

1

2
Δ + 𝑟

√3

2
+ 𝑧0

0 0 0 1 )

 
 
 

(

−𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡)
𝑧4
1

) 

𝐵(

𝑥𝑏
𝑦𝑏
𝑧𝑏
1

) = 𝐵

(

 
 
 
 

𝑟 ⋅ cos(3𝜔𝑡)

𝑟

2
sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2

𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0

1 )

 
 
 
 

 

𝐶 (

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

) =

(

 
 
 

−1 0 0 0

0 −
1

2
−
√3

2

−𝑟

2

0 −
√3

2

1

2
Δ + 𝑟

√3

2
+ 𝑧0

0 0 0 1 )

 
 
 

(

𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡)
𝑧4
1

) 

𝐶 (

𝑥𝑐
𝑦𝑐
𝑧𝑐
1

) = 𝐶

(

 
 
 
 

−𝑟 ⋅ cos(3𝜔𝑡)

−
𝑟

2
sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2

−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0

1 )
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Déterminer les coordonnées des électrinettes D et E dans le repère local R5 : 

𝐷𝑅5 (
−𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡)
𝑧4

) 

𝐸𝑅5 (
𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡)
𝑧4

) 

Déterminer les coordonnées des électrinettes D et E dans le repère global R : 

𝐷(

𝑥𝑑
𝑦𝑑
𝑧𝑑
1

) =

(

 
 
 

−1 0 0 0

0 −
1

2

√3

2

𝑟

2

0
√3

2

1

2
Δ + 𝑟

√3

2
+ 𝑧0

0 0 0 1 )

 
 
 

(

−𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡)
𝑧4
1

) 

𝐷(

𝑥𝑑
𝑦𝑑
𝑧𝑑
1

) = 𝐷

(

 
 
 
 

𝑟 ⋅ cos(3𝜔𝑡)

𝑟

2
sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2

−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0

1 )

 
 
 
 

 

𝐸 (

𝑥𝑒
𝑦𝑒
𝑧𝑒
1

) =

(

 
 
 

−1 0 0 0

0 −
1

2

√3

2

𝑟

2

0
√3

2

1

2
Δ + 𝑟

√3

2
+ 𝑧0

0 0 0 1 )

 
 
 

(

𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡)
𝑧4
1

) 

𝐸 (

𝑥𝑒
𝑦𝑒
𝑧𝑒
1

) = 𝐸

(

 
 
 
 

−𝑟 ⋅ cos(3𝜔𝑡)

−
𝑟

2
sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2

𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0

1 )

 
 
 
 

 

Déterminer les coordonnées des électrinettes Γ et Σ dans le repère local R6 : 

Γ𝑅6 (
𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧6

) 

Σ𝑅6(
−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧6

) 

Déterminer les coordonnées des électrinettes Γ et Σ dans le repère global R : 
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Γ(

𝑥𝛾
𝑦𝛾
𝑧𝛾
1

) =

(

 
 
 
 
 

1

2

−3

4

√3

4
Δ6
√3

2
+
3𝑟

4
+ 𝑧0

√3

2

0 −
1

2

−√3

2

−𝑟

2

√3

2

√3

4
−
1

4
−
Δ6
2
− 𝑟

√3

4
−
𝑧0
2

0 0 0 1 )

 
 
 
 
 

(

𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧6
1

) 

Γ(

𝑥𝛾
𝑦𝛾
𝑧𝛾
1

) = Γ

(

 
 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
+ 𝑧0

√3

2

−
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2

𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

1 )

 
 
 
 
 

 

 

Σ(

𝑥𝜎
𝑦𝜎
𝑧𝜎
1

) =

(

 
 
 
 
 

1

2

−3

4

√3

4
Δ6
√3

2
+
3𝑟

4
+ 𝑧0

√3

2

0 −
1

2

−√3

2

−𝑟

2

√3

2

√3

4
−
1

4
−
Δ6
2
− 𝑟

√3

4
−
𝑧0
2

0 0 0 1 )

 
 
 
 
 

(

−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧6
1

) 

Σ(

𝑥𝜎
𝑦𝜎
𝑧𝜎
1

) = Σ

(

 
 
 
 
 

−𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
+ 𝑧0

√3

2

𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2

−𝑟
√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

1 )

 
 
 
 
 

 

Déterminer les coordonnées des électrinettes Ω et Φ dans le repère local R7 : 

Ω𝑅7 (
𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧6

) 

Φ𝑅7(
−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧6

) 

Déterminer les coordonnées des électrinettes Ω et Φ dans le repère global R : 

Ω(

𝑥𝜔
𝑦𝜔
𝑧𝜔
1

) =

(

 
 
 
 
 

1

2

3

4

√3

4
Δ6
√3

2
+
3𝑟

4
+ 𝑧0

√3

2

0 −
1

2

√3

2

𝑟

2

√3

2

−√3

4
−
1

4
−
Δ6
2
− 𝑟

√3

4
−
𝑧0
2

0 0 0 1 )

 
 
 
 
 

(

𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡)
𝑧6
1

) 
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Ω(

𝑥𝜔
𝑦𝜔
𝑧𝜔
1

) = Ω

(

 
 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
+ 𝑧0

√3

2

−
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2

𝑟
√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

1 )

 
 
 
 
 

 

Φ(

𝑥𝜑
𝑦𝜑
𝑧𝜑
1

) =

(

 
 
 
 
 

1

2

3

4

√3

4
Δ6
√3

2
+
3𝑟

4
+ 𝑧0

√3

2

0 −
1

2

√3

2

𝑟

2

√3

2

−√3

4
−
1

4
−
Δ6
2
− 𝑟

√3

4
−
𝑧0
2

0 0 0 1 )

 
 
 
 
 

(

−𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡)
𝑧6
1

) 

Φ(

𝑥𝜔
𝑦𝜔
𝑧𝜔
1

) = Φ

(

 
 
 
 
 

−𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
+ 𝑧0

√3

2
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2

−𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

1 )

 
 
 
 
 

 

 

Déterminer les vecteurs et les distances entre les électrinettes F, B, C, D et E : 

𝐷𝐹𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝐵⃗⃗⃗⃗  ⃗ =

(

  
 

𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)

𝑟

2
⋅ sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)

𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐹𝐵
2 = [𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [

𝑟

2
⋅ sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

𝐷𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝐶⃗⃗⃗⃗  ⃗ =

(

  
 

−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)

−
𝑟

2
⋅ sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)

−𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐹𝐶
2 = [−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
+ 𝑟 ⋅ sin(𝜔𝑡)]

2

+ [−𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2
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𝐷𝐹𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝐷⃗⃗⃗⃗  ⃗ =

(

  
 

𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)

−𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐹𝐷
2 = [𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)]

2

+ [−𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

𝐷𝐹𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐹𝐸⃗⃗⃗⃗  ⃗ =

(

  
 

−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)

−
𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)

𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐹𝐸
2 = [−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [−

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

 

Déterminer les vecteurs et les distances entre les électrinettes H, Γ, Σ, Ω et Φ : 

𝐷𝐻Γ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐻Γ⃗⃗⃗⃗  ⃗ =

(

 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2

−
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)

𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
− 𝑟

√3

4
−
Δ6
2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3
2 )

 
 
 
 

 

𝐷𝐻Γ
2 = [

𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]

2

+ [−
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
− 𝑟

√3

4
−
Δ6
2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3
2
]

2

 

 

𝐷𝐻Σ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐻Σ⃗⃗⃗⃗  ⃗ =

(

 
 
 
 

−𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)

−𝑟
√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
− 𝑟

√3

4
−
Δ6
2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3
2 )
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𝐷𝐻Σ
2 = [

−𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]

2

+ [
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) +

𝑧6
4
+ 𝑟

√3

4
+
Δ6
2
+ 𝑟

√3

2
cos(3𝜔𝑡) +

𝑧3
2
]

2

 

𝐷𝐻Ω⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐻Ω⃗⃗⃗⃗⃗⃗ =

(

 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2

−
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)

𝑟
√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
− 𝑟

√3

4
−
Δ6
2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3
2 )

 
 
 
 

 

𝐷𝐻Ω
2 = [

𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]

2

+ [−
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [−𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) +

𝑧6
4
+ 𝑟

√3

4
+
Δ6
2
+ 𝑟

√3

2
cos(3𝜔𝑡) +

𝑧3
2
]

2

 

𝐷𝐻𝜙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝐻Φ⃗⃗ ⃗⃗ ⃗⃗ =

(

 
 
 
 

−𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)

−𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
− 𝑟

√3

4
−
Δ6
2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3
2 )

 
 
 
 

 

𝐷𝐻Φ
2 = [

−𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]

2

+ [
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) +

𝑧6
4
+ 𝑟

√3

4
+
Δ6
2
+ 𝑟

√3

2
cos(3𝜔𝑡) +

𝑧3
2
]

2

 

 

Déterminer les vecteurs et les distances entre les électrinettes C, D, E et A : 

𝐷𝐴𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴𝐶⃗⃗⃗⃗  ⃗ =

(

  
 

−𝑟 ⋅ cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡)

−
𝑟

2
sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2
+ 𝑟 ⋅ sin(𝜔𝑡)

−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 



Modèle XijieDong V3.0 

 

P a g e  72 | 219 

 

𝐷𝐴𝐶
2 = [𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [𝑟 ⋅ sin(𝜔𝑡) −

𝑟

2
⋅ sin(3𝜔𝑡) − 𝑧4

√3

2
−
𝑟

2
]

2

+ [−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

𝐷𝐴𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴𝐷⃗⃗ ⃗⃗  ⃗ =

(

  
 

𝑟 ⋅ cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡)

𝑟

2
sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
+ 𝑟 ⋅ sin(𝜔𝑡)

−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐴𝐷
2 = [𝑟 ⋅ cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡)]2 + [𝑟 ⋅ sin(𝜔𝑡) +

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
]

2

+ [−𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

𝐷𝐴𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐴𝐸⃗⃗⃗⃗  ⃗ =

(

  
 

−𝑟 ⋅ cos(3𝜔𝑡) − 𝑟 ⋅ cos(𝜔𝑡)

−
𝑟

2
sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
+ 𝑟 ⋅ sin(𝜔𝑡)

𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧)

  
 

 

𝐷𝐴𝐸
2 = [𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [𝑟 ⋅ sin(𝜔𝑡) −

𝑟

2
⋅ sin(3𝜔𝑡) +

√3

2
𝑧4 +

𝑟

2
]

2

+ [𝑟
√3

2
sin(3𝜔𝑡) +

𝑧4
2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

 

Déterminer les vecteurs et les distances entre les électrinettes B, A, D et E : 

𝐷𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐵𝐴⃗⃗⃗⃗  ⃗ =

(

  
 

𝑟 ⋅ cos(𝜔𝑡) − 𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡) −
𝑟

2
sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2

𝑧 − 𝑟
√3

2
sin(3𝜔𝑡) −

𝑧4
2
− 𝑟

√3

2
− Δ − 𝑧0)

  
 

 

 

𝐷𝐵𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐵𝐸⃗⃗⃗⃗  ⃗ = (
−2𝑟 ⋅ cos(3𝜔𝑡)

−𝑟 ⋅ sin(3𝜔𝑡) + 𝑧4√3 + 𝑟
0

) 

𝐷𝐵𝐸
2 = [2𝑟 ⋅ cos(3𝜔𝑡)]2 + [−𝑟 ⋅ sin(3𝜔𝑡) + 𝑧4√3 + 𝑟]

2
 

 

𝐷𝐵𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐵𝐷⃗⃗⃗⃗⃗⃗ = (

0

𝑧4√3 + 𝑟

𝑟√3 sin(3𝜔𝑡)

) 
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𝐷𝐵𝐷
2 = [𝑟 + 𝑧4√3]

2
+ 3[𝑟 ⋅ sin(3𝜔𝑡)]2 

Déterminer les vecteurs et les distances entre les électrinettes D, E et C : 

𝐷𝐶𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐶𝐷⃗⃗⃗⃗  ⃗ = (
2𝑟 ⋅ cos(3𝜔𝑡)

𝑟 ⋅ sin(3𝜔𝑡) + 𝑧4√3 + 𝑟
0

) 

𝐷𝐶𝐷
2 = 4[𝑟 ⋅ cos(3𝜔𝑡)]2 + [𝑟 ⋅ sin(3𝜔𝑡) + 𝑧4√3 + 𝑟]

2
 

 

𝐷𝐶𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝐶𝐸⃗⃗⃗⃗  ⃗ = (

0

𝑧4√3 + 𝑟

𝑟√3 sin(3𝜔𝑡)

) 

𝐷𝐶𝐸
2 = [𝑟 + 𝑧4√3]

2
+ 3[𝑟 ⋅ sin(3𝜔𝑡)]2 

 

Déterminer les vecteurs et les distances entre les électrinettes Σ, Φ, G et Ω : 

𝐷ΣΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ΣΩ⃗⃗⃗⃗  ⃗ = (

𝑟 ⋅ cos(𝜔𝑡)

−𝑟 ⋅ sin(𝜔𝑡) + 𝑧6√3 + 𝑟

𝑟√3 ⋅ cos(𝜔𝑡)

) 

𝐷ΣΩ
2 = [𝑟 ⋅ cos(𝜔𝑡)]2 + [−𝑟 ⋅ sin(𝜔𝑡) + 𝑧6√3 + 𝑟]

2
+ [𝑟√3 ⋅ cos(𝜔𝑡)]

2
 

𝐷ΣΦ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = ΣΦ⃗⃗ ⃗⃗  ⃗ =

(

  
 
−
3

2
𝑟 ⋅ sin(𝜔𝑡)

𝑧6√3 + 𝑟

√3

2
𝑟 ⋅ sin(𝜔𝑡))

  
 

 

𝐷ΣΦ
2 = [−

3

2
𝑟 ⋅ sin(𝜔𝑡)]

2

+ [𝑧6√3 + 𝑟]
2
+ [
√3

2
𝑟 ⋅ sin(𝜔𝑡)]

2

 

𝐷ΣG⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ΣG⃗⃗⃗⃗  ⃗ =

(

 
 
 
 
−
𝑟

2
⋅ cos(3𝜔𝑡) −

𝑧3√3

2
+
𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 sin(𝜔𝑡) −

√3

4
𝑧6 −

√3

2
Δ6 −

3𝑟

4

−𝑟 ⋅ sin(3𝜔𝑡) −
𝑟

2
⋅ sin(𝜔𝑡) +

√3

2
𝑧6 +

𝑟

2

−
√3

2
𝑟 ⋅ cos(3𝜔𝑡) +

𝑧3
2
+
√3

2
𝑟 ⋅ cos(𝜔𝑡) +

√3

4
𝑟 ⋅ sin(𝜔𝑡) +

𝑧6
4
+
√3

4
𝑟 +

Δ6
2 )

 
 
 
 

 

𝐷ΓH⃗⃗ ⃗⃗ ⃗⃗  ⃗ = Γ𝐻⃗⃗⃗⃗  ⃗ =

(

 
 
 
 

𝑟

2
⋅ cos(3𝜔𝑡) − 𝑧3

√3

2
−
𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) − 𝑧6

√3

4
− Δ6

√3

2
−
3𝑟

4

𝑟 ⋅ sin(3𝜔𝑡) +
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2

𝑟
√3

2
cos(3𝜔𝑡) +

𝑧3
2
− 𝑟

√3

2
⋅ cos(𝜔𝑡) − 𝑟

√3

4
⋅ sin(𝜔𝑡) +

𝑧6
4
+ 𝑟

√3

4
+
Δ6
2 )
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Déterminer les vecteurs et les distances entre les électrinettes Γ, Φ, G et Ω : 

 

 

 

𝐷ΓΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ΓΩ⃗⃗⃗⃗  ⃗ =

(

  
 

3

2
𝑟 ⋅ sin(𝜔𝑡)

𝑧6√3 + 𝑟

−
√3

2
𝑟 ⋅ sin(𝜔𝑡))

  
 

 

𝐷ΓΩ
2 = [

3

2
𝑟 ⋅ sin(𝜔𝑡)]

2

+ [𝑧6√3 + 𝑟]
2
+ [
√3

2
𝑟 ⋅ sin(𝜔𝑡)]

2

 

𝐷ΓΦ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ΓΦ⃗⃗ ⃗⃗  ⃗ = (

−𝑟 ⋅ cos(𝜔𝑡)

𝑟 ⋅ sin(𝜔𝑡) + 𝑧6√3 + 𝑟

−√3 𝑟 ⋅ cos(𝜔𝑡)

) 

𝐷ΓΦ
2 = [−𝑟 ⋅ cos(𝜔𝑡)]2 + [𝑟 + 𝑟 ⋅ sin(𝜔𝑡) + 𝑧6√3]

2
+ [−√3 𝑟 ⋅ cos(𝜔𝑡)]

2
 

 

 

 

𝐷ΓG⃗⃗ ⃗⃗ ⃗⃗  ⃗ = ΓG⃗⃗ ⃗⃗ =

(

 
 
 
 
−
𝑟

2
⋅ cos(3𝜔𝑡) −

𝑧3√3

2
−
𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 sin(𝜔𝑡) −

√3

4
𝑧6 −

√3

2
Δ6 −

3𝑟

4

−𝑟 ⋅ sin(3𝜔𝑡) +
𝑟

2
⋅ sin(𝜔𝑡) +

√3

2
𝑧6 +

𝑟

2

−
√3

2
𝑟 ⋅ cos(3𝜔𝑡) +

𝑧3
2
−
√3

2
𝑟 ⋅ cos(𝜔𝑡) −

√3

4
𝑟 ⋅ sin(𝜔𝑡) +

𝑧6
4
+
√3

4
𝑟 +

Δ6
2 )

 
 
 
 

 

 

 

4.8.4.3 Déterminer la masse de chaque électrinette 

Les électrinettes seront numérotées comme suit : 

1. électrinette F : vitesse v1, la masse 中 F# globale. 

2. électrinette A : vitesse v1, la masse 中 F# globale. 

3. électrinette J : vitesse v1, la masse 中 F# globale. 

4. électrinette I : vitesse v1, la masse 中 F# globale. 

5. électrinette G : vitesse v3, la masse 中 H# globale. 

6. électrinette H : vitesse v3, la masse 中 H# globale. 

7. électrinette B : vitesse v3, la masse 中 B# globale. 

8. électrinette C : vitesse v3, la masse 中 B# globale. 

9. électrinette D : vitesse v3, la masse 中 B# globale. 

10. électrinette E : vitesse v3, la masse 中 B# globale. 
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11. électrinette Θ : vitesse v3, la masse 中 B# globale. 

12. électrinette Ψ : vitesse v3, la masse 中 B# globale. 

13. électrinette Π : vitesse v3, la masse 中 B# globale. 

14. électrinette Λ : vitesse v3, la masse 中 B# globale. 

15. électrinette Γ : vitesse v1, la masse 中 Γ# globale. 

16. électrinette Σ : vitesse v1, la masse 中 Γ# globale. 

17. électrinette Ω : vitesse v1, la masse 中 Γ# globale. 

18. électrinette Φ : vitesse v1, la masse 中 Γ# globale. 

La masse globale de l’électrinette F s’exprime par la formule suivante : 

中
𝐹#
=中

𝐹
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐹𝐼 + 𝐸𝑒𝐹𝐺 + 𝐸𝑒𝐹𝐶 + 𝐸𝑒𝐹𝐸) 

Où : 

• 中 F# : représente la masse inerte globale de l’électrinette F. 

• 中 F : est la charge neutre de l’électrinette F 

• EeFp : est l’énergie potentielle électrique entre l’électrinette F et l’électrinette p ayant un 

signe opposé à celui de l’électrinette F. En plus, la distance entre les électrinettes F et p varie 

entre 0 et d > 0. Avec p = I, G, C ou E. 

Pour calculer l’énergie potentielle EeFp, il faut connaitre la moyenne de la distance qui les sépare. En 

négligeant les déplacements des charginettes par rapport au triangle équilatéral, les distances 

s’écrient : 

• DFI = r*fFI = 0.36373 *10-15*1.757 = 0.63907361*10-15 m 

• DFG = r*fFG = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• 𝐷𝐹𝐶
2 = [−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
+ 𝑟 ⋅ sin(𝜔𝑡)]

2

+

[−𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4

2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

Conditions de calcul : 

Δ = Δ6 = z4 = z6 = 0 

z = z0 = r/√3 

𝐷𝐹𝐶 =
𝑟

2
√4[−cos(3𝜔𝑡) + cos(𝜔𝑡)]2 + [sin(3𝜔𝑡) + 1 + 2 ⋅ sin(𝜔𝑡)]2 + 3[1 − sin(3𝜔𝑡)]2 

Tracer la courbe à l’aide de Simulink (fichier : Courbe_distance_D_FC.slx) 
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Figure 29 - Moyenne distance FC 

DFC = r*fFC = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

 

• 𝐷𝐹𝐸
2 = [−𝑟 ⋅ cos(3𝜔𝑡) + 𝑟 ⋅ cos(𝜔𝑡)]2 + [−

𝑟

2
⋅ sin(3𝜔𝑡) + 𝑧4

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(𝜔𝑡)]

2

+

[𝑟
√3

2
⋅ sin(3𝜔𝑡) +

𝑧4

2
+ 𝑟

√3

2
+ Δ + 𝑧0 − 𝑧]

2

 

𝐷𝐹𝐸 =
𝑟

2
√4[−cos(3𝜔𝑡) + cos(𝜔𝑡)]2 + [− sin(3𝜔𝑡) + 1 − 2 ⋅ sin(𝜔𝑡)]2 + 3[1 + sin(3𝜔𝑡)]2 

 

 

Figure 30 - Moyenne distance FE 

DFE = r*fFE = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

(Fichier : Courbe_distance_D_FE.slx) 

• DHA = r*fHA = 0.36373 *10-15*1.65 = 0.6001545*10-15 m 

• DHI = r*fHI = 0.36373*10-15*1.65 = 0.6001545*10-15 m 
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• 𝐷𝐻Γ
2 = [

𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]
2

+

[−
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6

4
− 𝑟

√3

4
−

Δ6

2
− 𝑟

√3

2
cos(3𝜔𝑡) −

𝑧3

2
]
2

 

𝐷𝐻Γ
2

𝑟2
= [
1

2
⋅ cos(𝜔𝑡) −

3

4
⋅ sin(𝜔𝑡) +

3

4
−
1

2
⋅ cos(3𝜔𝑡)]

2

+ [
1

2
⋅ sin(𝜔𝑡) +

1

2
+ sin(3𝜔𝑡)]

2

+ [
√3

2
⋅ cos(𝜔𝑡) +

√3

4
⋅ sin(𝜔𝑡) −

√3

4
−
√3

2
cos(3𝜔𝑡)]

2

 

4 ⋅ 𝐷𝐻Γ
2

𝑟2
= [
3

2
+ cos(𝜔𝑡) −

3

2
⋅ sin(𝜔𝑡) − cos(3𝜔𝑡)]

2

+ [sin(𝜔𝑡) + 1 + 2 ⋅ sin(3𝜔𝑡)]2

+ 3 [cos(𝜔𝑡) +
1

2
⋅ sin(𝜔𝑡) −

1

2
− cos(3𝜔𝑡)]

2

 

42 ⋅ 𝐷𝐻Γ
2

𝑟2
= [3 + 2cos(𝜔𝑡) − 3 ⋅ sin(𝜔𝑡) − 2 ⋅ cos(3𝜔𝑡)]2 + [2 ⋅ sin(𝜔𝑡) + 2 + 4 ⋅ sin(3𝜔𝑡)]2

+ 3[2 ⋅ cos(𝜔𝑡) + sin(𝜔𝑡) − 1 − 2 ⋅ cos(3𝜔𝑡)]2 

Tracer la courbe à l’aide de Simulink (fichier : Courbe_distance_D_Hgamma.slx) 

 

Figure 31 - Moyenne distance HΓ 

DHΓ = r*fHΓ = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

 

 

• 𝐷𝐻Ω
2 = [

𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡) + 𝑧3

√3

2
]
2

+

[−
𝑟

2
⋅ sin(𝜔𝑡) + 𝑧6

√3

2
+
𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [−𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) +

𝑧6

4
+ 𝑟

√3

4
+

Δ6

2
+ 𝑟

√3

2
cos(3𝜔𝑡) +

𝑧3

2
]
2

 

 

 

𝐷𝐻Ω
2 = [

𝑟

2
⋅ cos(𝜔𝑡) +

3

4
𝑟 ⋅ sin(𝜔𝑡) +

3𝑟

4
−
𝑟

2
⋅ cos(3𝜔𝑡)]

2

+ [−
𝑟

2
⋅ sin(𝜔𝑡) +

𝑟

2
− 𝑟 ⋅ sin(3𝜔𝑡)]

2

+ [−𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) + 𝑟

√3

4
+ 𝑟

√3

2
cos(3𝜔𝑡)]

2
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4

𝑟2
𝐷𝐻Ω
2 = [cos(𝜔𝑡) +

3

2
⋅ sin(𝜔𝑡) +

3

2
− cos(3𝜔𝑡)]

2

+ [− sin(𝜔𝑡) + 1 − 2 ⋅ sin(3𝜔𝑡)]2

+ 3 [− cos(𝜔𝑡) +
1

2
⋅ sin(𝜔𝑡) +

1

2
+ cos(3𝜔𝑡)]

2

 

42

𝑟2
𝐷𝐻Ω
2 = [3 + 2 ⋅ cos(𝜔𝑡) + 3 ⋅ sin(𝜔𝑡) − 2 ⋅ cos(3𝜔𝑡)]2 + [2 − 2 ⋅ sin(𝜔𝑡) − 4 ⋅ sin(3𝜔𝑡)]2

+ 3[sin(𝜔𝑡) − 2 ⋅ cos(𝜔𝑡) + 1 + 2 ⋅ cos(3𝜔𝑡)]2 

 

Figure 32 - Moyenne distance HΩ 

DHΩ = r*fHΩ = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

(Fichier : Courbe_distance_D_HOmega.slx) 

 

• 𝐷𝐵𝐸
2 = [2𝑟 ⋅ cos(3𝜔𝑡)]2 + [−𝑟 ⋅ sin(3𝜔𝑡) + 𝑧4√3 + 𝑟]

2
 

Z4 = 0 

𝐷𝐵𝐸 = 𝑟 ⋅ √[2 ⋅ cos(3𝜔𝑡)]
2 + [1 − sin(3𝜔𝑡)]2 

 

 

Figure 33 - Moyenne distance BE 

DBE = r*fBE = 0.36373*10-15*1.757 = 0.63907361*10-15 m 
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(Fichier : Courbe_distance_D_BE.slx) 

• 𝐷𝐵𝐴
2 = [𝑟 ⋅ cos(𝜔𝑡) − 𝑟 ⋅ cos(3𝜔𝑡)]2 + [

𝑟

2
− 𝑟 sin(𝜔𝑡) −

𝑟

2
⋅ sin(3𝜔𝑡)]

2
+ [𝑟

√3

2
+ 𝑟

√3

2
⋅

sin(3𝜔𝑡)]
2

 

𝐷𝐵𝐴
2
4

𝑟2
= 4[cos(𝜔𝑡) − cos(3𝜔𝑡)]2 + [1 − 2 sin(𝜔𝑡) − sin(3𝜔𝑡)]2 + 3[1 + sin(3𝜔𝑡)]2 

 

 

Figure 34 - Moyenne distance BA 

DBA = r*fBA = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

(Fichier : Courbe_distance_D_BA.slx) 

• 𝐷ΣΩ
2 = [𝑟 ⋅ cos(𝜔𝑡)]2 + [−𝑟 ⋅ sin(𝜔𝑡) + 𝑧6√3 + 𝑟]

2
+ [𝑟√3 ⋅ cos(𝜔𝑡)]

2
 

Z6 = 0 

𝐷ΣΩ = 𝑟 ⋅ √[cos(𝜔𝑡)]
2 + [1 − sin(𝜔𝑡)]2 + 3[cos(𝜔𝑡)]2 

 

Figure 35 - Moyenne distance ΣΩ 

DΣΩ = r*fΣΩ = 0.36373*10-15*1.757 = 0.63907361*10-15 m 

(Fichier : Courbe_distance_D_SigmaOmega.slx) 
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• 𝐷ΣG
2 1

𝑟2
= [

1

2
⋅ cos(𝜔𝑡) −

1

2
⋅ cos(3𝜔𝑡) −

3

4
⋅ sin(𝜔𝑡) −

3

4
]
2
+ [

1

2
−
1

2
⋅ sin(𝜔𝑡) − sin(3𝜔𝑡)]

2
+

[
√3

4
+
√3

2
⋅ cos(𝜔𝑡) +

√3

4
⋅ sin(𝜔𝑡) −

√3

2
⋅ cos(3𝜔𝑡)]

2

 

Z6 = Z3 = Δ6 = 0 

 

𝐷ΣG
2
42

𝑟2
= [2 ⋅ cos(𝜔𝑡) − 2 ⋅ cos(3𝜔𝑡) − 3 ⋅ sin(𝜔𝑡) − 3]2

+ [2 − 2 ⋅ sin(𝜔𝑡) − 4 ⋅ sin(3𝜔𝑡)]2

+ 3[1 + 2 ⋅ cos(𝜔𝑡) + sin(𝜔𝑡) − 2 ⋅ cos(3𝜔𝑡)]2 

 

Figure 36 - Moyenne distance ΣG 

DΣG = r*fΣG = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

(Fichier : Courbe_distance_D_SigmaG.slx) 

 

La masse globale de l’électrinette F devient : 

中
𝐹#
=中

𝐹
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐹0
中
𝐼0

𝐷𝐹𝐼
+
中
𝐹0
中
𝐺0

𝐷𝐹𝐺
+
中
𝐹0
中
𝐶0

𝐷𝐹𝐶
+
中
𝐹0
中
𝐸0

𝐷𝐹𝐸
) 

Avec la vitesse orbitale des charginettes très inférieure à c, 中 F =中 F0. Donc on a : 

中
𝐹#
=中

𝐹0
+ 
𝑘𝑒𝑒

2中
𝐹0

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐹0

𝐷𝐹𝐼
+
中
𝐻0

𝐷𝐹𝐺
+
中
𝐻0

𝐷𝐹𝐶
+
中
𝐻0

𝐷𝐹𝐸
) 

中
𝐹#
=中

𝐹0
+ 

𝑘𝑒𝑒
2中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) 

Par symétrie, 中 A# =中 I# =中 J# =中 F#. 

La masse globale de l’électrinette H s’exprime par la formule suivante : 
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中
𝐻#
=中

𝐻
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐻𝐴 + 𝐸𝑒𝐻𝐼 + 𝐸𝑒𝐻Γ + 𝐸𝑒𝐻Ω) 

Où : 

• 中 H# : représente la masse inerte globale de l’électrinette H. 

• 中 H : est la charge neutre de l’électrinette H 

• EeHp : est l’énergie potentielle électrique entre l’électrinette H et l’électrinette p. Avec p = 

A, I, Γ ou Ω. 

 

中
𝐻#
=中

𝐻
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐻0

中
𝐴0

𝐷𝐻𝐴
+
中
𝐻0

中
𝐼0

𝐷𝐻𝐼
+
中
𝐻0

中
Γ

𝐷𝐻Γ
+
中
𝐻0

中
Ω

𝐷𝐻Ω
) 

中
𝐻#
=中

𝐻0
+ 

𝑘𝑒𝑒
2中

𝐻0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐻𝐴
+
中
𝐹0

𝑓𝐻𝐼
+
中
𝐹0

𝑓𝐻Γ
+
中
𝐹0

𝑓𝐻Ω
) 

中
𝐻#
=中

𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0
⋅中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) 

Par symétrie, 中 G# =中 H#. 

La masse globale de l’électrinette B s’exprime par la formule suivante : 

中
𝐵#
=中

𝐵
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐵𝐴 + 𝐸𝑒𝐵𝐸) 

Où : 

• 中 B# : représente la masse inerte globale de l’électrinette B. 

• 中 B : est la charge neutre de l’électrinette B 

• EeBp : est l’énergie potentielle électrique entre l’électrinette B et l’électrinette p ayant un 

signe opposé à celui de l’électrinette B. En plus, la distance entre les électrinettes B et p varie 

entre 0 et d > 0. Avec p = A ou E. 

 

中
𝐵#
=中

𝐵
+  

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐵0
中
𝐹0

𝐷𝐵𝐴
+
中
𝐵0
中
𝐸0

𝐷𝐵𝐸
) 

中
𝐵#
=中

𝐻0
+  

𝑘𝑒𝑒
2中

𝐻0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) 

Par symétrie, 中 C# =中 D# =中 E# =中 Θ# =中 Ψ# =中 Π# =中 Λ# =中 B#. 

La masse globale de l’électrinette Σ s’exprime par la formule suivante : 

中
Σ#
=中

Σ
+ 

1

2𝑐2
⋅ (𝐸𝑒ΣG + 𝐸𝑒ΣΩ) 

Où : 
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• 中 Σ# : représente la masse inerte globale de l’électrinette Σ. 

• 中 Σ : est la charge neutre de l’électrinette Σ 

• EeΣp : est l’énergie potentielle électrique entre l’électrinette Σ et l’électrinette p ayant un 

signe opposé à celui de l’électrinette Σ. En plus, la distance entre les électrinettes Σ et p varie 

entre 0 et d > 0. Avec p = G ou Ω. 

 

中
Σ#
=中

Σ
+  

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
Σ0
中
𝐺0

𝐷Σ𝐺
+
中
Σ0
中
Ω0

𝐷ΣΩ
) 

中
Σ#
=中

𝐹0
+  

𝑘𝑒𝑒
2中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

Par symétrie, 中 Γ# =中 Ω# =中 Φ# =中 Σ#. 

La masse globale de la nucléonette est : 

中
𝑛𝑢𝑐𝑙

= ∑中
𝑝#

18

𝑝=1

 

中
𝑛𝑢𝑐𝑙

= 4 ⋅中
𝐹#
+ 2 ⋅中

𝐻#
+ 8 ⋅中

𝐵#
+ 4 ⋅中

Σ#
 

中
𝑛𝑢𝑐𝑙

= 4 ⋅中
𝐹0
+ 
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) + 2 ⋅中

𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0
⋅中

𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) + 8 ⋅中

𝐻0
+  
4𝑘𝑒𝑒

2中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) + 4 ⋅中

𝐹0

+  
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

中
𝑛𝑢𝑐𝑙

= 8 ⋅中
𝐹0
+ 
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
+
中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) + 10 ⋅中

𝐻0

+ 
𝑘𝑒𝑒

2中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐻𝐴
+
中
𝐹0

𝑓𝐻𝐼
+
中
𝐹0

𝑓𝐻Γ
+
中
𝐹0

𝑓𝐻Ω
+
4 中

𝐹0

𝑓𝐵𝐴
+
4 中

𝐻0

𝑓𝐵𝐸
) 

La masse de la nucléonette est égale à la masse du neutron – la masse de 2 positrons et de 2 

électrons : 

中
𝑛𝑢𝑐𝑙

=中
𝑛0
− 4 中

𝑒+
= 939.5654 𝑀𝑒𝑉 − 4 ⋅ 511 𝐾𝑒𝑉 = 937.5214 𝑀𝑒𝑉 

Or : 

𝑟 =
𝑘𝑒中𝐹0

𝑒2

4中
𝑟𝑒𝑓

2 ⋅ (
𝑘𝑛

𝑣1
2) 
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𝑟 =
𝑘𝑒中𝐻0

𝑒2

4中
𝑟𝑒𝑓

2 ⋅ [
𝑘𝑛

(3𝑣1)
2] =

𝑘𝑒中𝐻0
𝑒2

4中
𝑟𝑒𝑓

2
⋅ 9
⋅ [
𝑘𝑛
(𝑣1)

2] 

En combinant les deux : 

𝑟

中
𝐹0

=
9𝑟

中
𝐻0

 

中
𝐻0
= 9 ⋅中

𝐹0
 

L’égalité précédente devient : 

中
𝑛𝑢𝑐𝑙

= 8 ⋅中
𝐹0
+ 
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
9中

𝐹0

𝑓𝐹𝐺
+
9中

𝐹0

𝑓𝐹𝐶
+
9中

𝐹0

𝑓𝐹𝐸
+
9中

𝐹0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) + 10 ⋅ 9中

𝐹0

+ 
9𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐻𝐴
+
中
𝐹0

𝑓𝐻𝐼
+
中
𝐹0

𝑓𝐻Γ
+
中
𝐹0

𝑓𝐻Ω
+
4 中

𝐹0

𝑓𝐵𝐴
+
4 ⋅ 9 中

𝐹0

𝑓𝐵𝐸
) 

中
𝑛𝑢𝑐𝑙

= 98中
𝐹0
+ 
𝑘𝑒𝑒

2中
𝐹0

2

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ [(
2

𝑓𝐹𝐼
+
18

𝑓𝐹𝐺
+
18

𝑓𝐹𝐶
+
18

𝑓𝐹𝐸
+
18

𝑓ΣG
+
2

𝑓ΣΩ
) + (

9

𝑓𝐻𝐴
+
9

𝑓𝐻𝐼
+
9

𝑓𝐻Γ
+
9

𝑓𝐻Ω
+
36

𝑓𝐵𝐴
+
324

𝑓𝐵𝐸
)] 

On a une équation du second degré par rapport à 中 F0. 

𝑎 =
𝑘𝑒𝑒

2

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
[
2

𝑓𝐹𝐼
+
18

𝑓𝐹𝐺
+
18

𝑓𝐹𝐶
+
18

𝑓𝐹𝐸
+
18

𝑓ΣG
+
2

𝑓ΣΩ
+
9

𝑓𝐻𝐴
+
9

𝑓𝐻𝐼
+
9

𝑓𝐻Γ
+
9

𝑓𝐻Ω
+
36

𝑓𝐵𝐴
+
324

𝑓𝐵𝐸
] 

𝑏 = 98 

𝑐𝑠 = −中𝑛𝑢𝑐𝑙
= −中

𝑛𝑢𝑐𝑙
⋅
𝑒

𝑐2
= −

937.521 ⋅ 1.602177 ⋅ 106 ⋅ 10−19

2.9975252 ⋅ 1016
= −1,671729687 ⋅ 10−27 ⋅ 𝑘𝑔 

[Σ𝑓] =
2

1.757
+
18

1.65
+
18

1.65
+
18

1.65
+
18

1.65
+

2

1.757
+

9

1.65
+

9

1.65
+

9

1.65
+

9

1.65
+
36

1.65
+
324

1.757
 

[Σ𝑓] =
2 + 2 + 324

1.757
+
18 ⋅ 4 + 9 ⋅ 4 + 36

1.65
 

[Σ𝑓] =
328

1.757
+
144

1.65
 

[Σ𝑓] = 273,954571325 

𝑎𝑛
𝑎𝑑
=

8.987552 ⋅ 1.6021772 ⋅ 109 ⋅ 10−38

2.9975252 ⋅ 9.1093822 ⋅ 0.36373 ⋅ 1016 ⋅ 10−62 ⋅ 10−15
= 8,5070664 ⋅ 1030 

𝑎 =
𝑎𝑛
𝑎𝑑
[Σ𝑓] = 8,5070664 ⋅ 10

30 ⋅ 273,954571325 = 2,330 549 728 846 ⋅ 1033 

中
𝐹0
=
−𝑏 ± √𝑏2 − 4𝑎𝑐

2 ⋅ 𝑎
=
−98 ± √982 + 4 ⋅ 2.330549729 ⋅ 1033 ⋅ 1,671729687 ⋅ 10−27

2 ⋅ 2.330549729 ⋅ 1033
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中
𝐹0
=
−98 ± 3948.898667

4.6610994577 ⋅ 1033
= 8,2617818 ⋅ 10−31𝑘𝑔 

中
𝐻0
= 9 ⋅中

𝐹0
= 7,4356036198 ⋅ 10−30𝑘𝑔 

 

𝑣1
2 =

𝑘𝑒中𝐹0
𝑒2

4中
𝑟𝑒𝑓

2 ⋅ (
𝑘𝑛
𝑟
) =

8.987552 ⋅ 8,2617818 ⋅ 1.6021772 ⋅ 10910−3110−38

4 ⋅ 9.1093822 ⋅ 10−62
⋅
10−11+15

0.36373
 

𝑣1
2 = 1,578771143 ⋅ 106 

𝑣1 = 1,256491601 ⋅ 10
3𝑚/𝑠 

𝑣3 = 3,769474803 ⋅ 10
3𝑚/𝑠 

Déterminer la vitesse angulaire : 

𝜔1 =
𝑣1
𝑟
=
1,256491601 ⋅ 103

0.36373 ⋅ 10−15
= 3.454462379 ⋅ 10−5 ⋅ 1023 𝑟𝑎𝑑𝑖𝑎𝑛/𝑠 

𝜔1𝑥 = 3.454462379 ⋅ 10
−5 

𝑇1 =
2𝜋𝑟

𝑣1
= 1.81886054 ⋅ 105 ⋅ 10−23 𝑠 

 

中
𝐹#
=中

𝐹0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐹0

2
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) 

中
𝐹#
⋅ 1031  = 8,2617818 + 0, 850707 ⋅

8,2617818

2

⋅ (
8,2617818

1.757
+
74,356036198

1.65
+
74,356036198

1.65
+
74,356036198

1.65
) 

中
𝐹#
⋅ 1031  = 499,877694321 

中
𝐹#
 = 499,877694321 ⋅ 10−31𝑘𝑔 

2 中
𝐹#
 = 999,755388642 ⋅ 10−31𝑘𝑔 

中
𝐻#
=中

𝐻0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐻0
⋅中

𝐹0

2
⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) 

中
𝐻#
⋅ 1031  = 74,356036198 + 0, 850707 ⋅

74,356036198 ⋅ 8,2617818

2

⋅ (
1

1.65
+

1

1.65
+

1

1.65
+

1

1.65
) 

中
𝐻#
= 707,811386658 ⋅ 10−31𝑘𝑔  

中
𝐵#
=中

𝐻0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐻0

2
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) 
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中
𝐵#
⋅ 1031  = 74,356036198 + 0, 850707 ⋅

74,356036198

2
⋅ (
8,2617818

1.65
+
74,356036198

1.757
) 

中
𝐵#
= 1571,169247473 ⋅ 10−31𝑘𝑔 

2中
𝐵#
= 3142,392494946 ⋅ 10−31𝑘𝑔 

 

中
Σ#
=中

𝐹0
+  
𝑎𝑛
𝑎𝑑
⋅
中
𝐹0

2
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

中
Σ#
⋅ 1031  = 8,2617818 + 0, 850707 ⋅

8,2617818

2
⋅ (
74,356036198

1.65
+
8,2617818

1.757
) 

中
Σ#
= 183,150019091 ⋅ 10−31𝑘𝑔 

2 中
Σ#
= 366.300038182 ⋅ 10−31𝑘𝑔 

Vérification : 

中
𝑛𝑢𝑐𝑙

= 4中
𝐹#
+ 2中

𝐻#
+ 8中

𝐵#
+ 4中

Σ#
 

中
𝑛𝑢𝑐𝑙

= 4 ⋅ 499,878 + 2 ⋅ 707,811 + 8 ⋅ 1571,196 + 4 ⋅ 183,150 = 16717.304 ⋅ 10−31 𝑘𝑔 

Cette valeur correspond bien à la masse neutron – la masse de 4 électrinettes  

= 1.675*10-27 – 4*9.110*10-31 = 16713.56*10-31  kg 

 

4.8.4.4 Déterminer les interactions électriques entre les électrinettes 

Les forces électriques subies par l’électrinette F de premier rang sont les suivantes : 

• 力
𝐹𝐼

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐹𝐼⋅𝑘𝑒𝐹𝐼⋅𝑒

2⋅𝐷𝐹𝐼⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐼
3  

• 力
𝐹𝐽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐹𝐽⋅𝑘𝑒𝐹𝐽⋅𝑒

2⋅𝐷𝐹𝐽⃗⃗ ⃗⃗ ⃗⃗⃗⃗  

𝐷𝐹𝐽
3  

• 力
𝐹𝐺

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐺⋅𝑘𝑒𝐹𝐺⋅𝑒

2⋅𝐷𝐹𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐺
3  

• 力
𝐹𝐻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐻⋅𝑘𝑒𝐹𝐻⋅𝑒

2⋅𝐷𝐹𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐻
3  

• 力
𝐹𝐵

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐵⋅𝑘𝑒𝐹𝐵⋅𝑒

2⋅𝐷𝐹𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐵
3  

• 力
𝐹𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐶⋅𝑘𝑒𝐹𝐶⋅𝑒

2⋅𝐷𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐶
3  

• 力
𝐹𝐷

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐷⋅𝑘𝑒𝐹𝐷⋅𝑒

2⋅𝐷𝐹𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐷
3  

• 力
𝐹𝐸

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹𝐸⋅𝑘𝑒𝐹𝐸⋅𝑒

2⋅𝐷𝐹𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐸
3  

Les forces électriques subies par l’électrinette F de deuxième rang sont les suivantes : 

• 力
𝐹Σ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Σ⋅𝑘𝑒𝐹Σ⋅𝑒

2⋅𝐷𝐹Σ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹Σ
3  
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• 力
𝐹Γ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐹Γ⋅𝑘𝑒𝐹Γ⋅𝑒

2⋅𝐷𝐹Γ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹Γ
3  

• 力
𝐹Φ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Φ⋅𝑘𝑒𝐹Φ⋅𝑒

2⋅𝐷𝐹Φ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹Φ
3  

• 力
𝐹Ω

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Ω⋅𝑘𝑒𝐹Ω⋅𝑒

2⋅𝐷𝐹Ω⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹Ω
3  

• 力
𝐹Θ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Θ⋅𝑘𝑒𝐹Θ⋅𝑒

2⋅𝐷𝐹Θ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹Θ
3  

• 力
𝐹Ψ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐹Ψ⋅𝑘𝑒𝐹Ψ⋅𝑒

2⋅𝐷𝐹Ψ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹Ψ
3  

• 力
𝐹Π

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Π⋅𝑘𝑒𝐹Π⋅𝑒

2⋅𝐷𝐹Π⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹Π
3  

• 力
𝐹Λ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐹Λ⋅𝑘𝑒𝐹Λ⋅𝑒

2⋅𝐷𝐹Λ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹Λ
3  

Les forces de deuxième rang sont négligeables car les électrinettes concernées sont derrières une 

charginette qui joue le rôle d’écran électrique. 

Déterminer les coefficients : 

𝑘𝑒𝐹? = 𝑘𝑒
中
𝐹

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛𝐹? = 10
−
𝐷𝐹?
𝑟
⋅100 + 10−21 

Avec ? = I, J, G, H, B, C, D, E. 

Sachant que : 

中
𝐼
=中

𝐽
=中

𝐴
=中

𝐹
 

中
𝐺
=中

𝐵
=中

𝐶
=中

𝐷
=中

𝐸
=中

𝐻
 

On a donc : 

𝑘𝑒𝐹𝐼 = 𝑘𝑒𝐹𝐽 = 𝑘𝑒𝐹𝐹 = 𝑘𝑒
中
𝐹

2

中
𝑟𝑒𝑓

2 = 8.987552 ⋅ 109 ⋅
8,26178182

9.1093822
= 7.39283526 ⋅ 109 

𝑘𝑒𝐹𝐺 = 𝑘𝑒𝐹𝐻 = 𝑘𝑒𝐹𝐵 = 𝑘𝑒𝐹𝐶 = 𝑘𝑒𝐹𝐷 = 𝑘𝑒𝐹𝐸 

𝑘𝑒𝐹𝐻 = 𝑘𝑒
中
𝐹
中
𝐻

中
𝑟𝑒𝑓

2 = 9 ⋅ 𝑘𝑒𝐹𝐹 = 66.535517341 ⋅ 10
9 

Les forces électriques subies par l’électrinette A de premier rang sont les suivantes : 

• 力
𝐴𝐼

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐴𝐼⋅𝑘𝑒𝐴𝐼⋅𝑒

2⋅𝐷𝐴𝐼⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐼
3  

• 力
𝐴𝐽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐴𝐽⋅𝑘𝑒𝐴𝐽⋅𝑒

2⋅𝐷𝐴𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐴𝐽
3  

• 力
𝐴𝐺

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐺⋅𝑘𝑒𝐴𝐺⋅𝑒

2⋅𝐷𝐴𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐺
3  

• 力
𝐴𝐻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐻⋅𝑘𝑒𝐴𝐻⋅𝑒

2⋅𝐷𝐴𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐻
3  
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• 力
𝐴𝐵

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐵⋅𝑘𝑒𝐴𝐵⋅𝑒

2⋅𝐷𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐵
3  

• 力
𝐴𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐶⋅𝑘𝑒𝐴𝐶⋅𝑒

2⋅𝐷𝐴𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐴𝐶
3  

• 力
𝐴𝐷

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐷⋅𝑘𝑒𝐴𝐷⋅𝑒

2⋅𝐷𝐴𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐷
3  

• 力
𝐴𝐸

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴𝐸⋅𝑘𝑒𝐴𝐸⋅𝑒

2⋅𝐷𝐴𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐴𝐸
3  

Les forces électriques subies par l’électrinette A de deuxième rang sont les suivantes : 

• 力
𝐴Σ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Σ⋅𝑘𝑒𝐴Σ⋅𝑒

2⋅𝐷𝐴Σ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐴Σ
3  

• 力
𝐴Γ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Γ⋅𝑘𝑒𝐴Γ⋅𝑒

2⋅𝐷𝐴Γ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐴Γ
3  

• 力
𝐴Φ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐴Φ⋅𝑘𝑒𝐴Φ⋅𝑒

2⋅𝐷𝐴Φ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Φ
3  

• 力
𝐴Ω

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Ω⋅𝑘𝑒𝐴Ω⋅𝑒

2⋅𝐷𝐴Ω⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Ω
3  

• 力
𝐴Θ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Θ⋅𝑘𝑒𝐴Θ⋅𝑒

2⋅𝐷𝐴Θ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Θ
3  

• 力
𝐴Ψ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐴Ψ⋅𝑘𝑒𝐴Ψ⋅𝑒

2⋅𝐷𝐴Ψ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Ψ
3  

• 力
𝐴Π

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Π⋅𝑘𝑒𝐴Π⋅𝑒

2⋅𝐷𝐴Π⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Π
3  

• 力
𝐴Λ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐴Λ⋅𝑘𝑒𝐴Λ⋅𝑒

2⋅𝐷𝐴Λ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴Λ
3  

Les forces de deuxième rang sont négligeables pour les mêmes raisons que précédemment. 

Déterminer les coefficients : 

𝑘𝑒𝐴? = 𝑘𝑒
中
𝐴

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛𝐴? = 10
−
𝐷𝐴?
𝑟
⋅100 + 10−21 

Avec ? = I, J, G, H, B, C, D, E. 

Sachant que : 

中
𝐼
=中

𝐽
=中

𝐴
=中

𝐹
 

中
𝐺
=中

𝐵
=中

𝐶
=中

𝐷
=中

𝐸
=中

𝐻
 

On a donc : 

𝑘𝑒𝐴𝐼 = 𝑘𝑒𝐴𝐽 = 𝑘𝑒𝐹𝐹 = 𝑘𝑒
中
𝐹

2

中
𝑟𝑒𝑓

2 = 7.39283526 ⋅ 109 

𝑘𝑒𝐴𝐺 = 𝑘𝑒𝐴𝐻 = 𝑘𝑒𝐴𝐵 = 𝑘𝑒𝐴𝐶 = 𝑘𝑒𝐴𝐷 = 𝑘𝑒𝐴𝐸 = 𝑘𝑒𝐹𝐻 = 66,535517341 ⋅ 10
9 

 

Les forces électriques subies par l’électrinette H de premier rang sont les suivantes : 
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• 力
𝐻𝐼

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐻𝐼⋅𝑘𝑒𝐻𝐼⋅𝑒

2⋅𝐷𝐻𝐼⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻𝐼
3  

• 力
𝐻𝐽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐽⋅𝑘𝑒𝐻𝐽⋅𝑒

2⋅𝐷𝐻𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻𝐽
3  

• 力
𝐻𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐴⋅𝑘𝑒𝐻𝐴⋅𝑒

2⋅𝐷𝐻𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐴
3  

• 力
𝐻𝐹

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐹⋅𝑘𝑒𝐻𝐹⋅𝑒

2⋅𝐷𝐻𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐹
3  

• 力
𝐻Γ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻Γ⋅𝑘𝑒𝐻Γ⋅𝑒

2⋅𝐷𝐻Γ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Γ
3  

• 力
𝐻Σ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻Σ⋅𝑘𝑒𝐻Σ⋅𝑒

2⋅𝐷𝐻Σ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Σ
3  

• 力
𝐻Ω

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐻Ω⋅𝑘𝑒𝐻Ω⋅𝑒

2⋅𝐷𝐻Ω⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Ω
3  

• 力
𝐻Φ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐻Φ⋅𝑘𝑒𝐻Φ⋅𝑒

2⋅𝐷𝐻Φ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻Φ
3  

Les forces électriques subies par l’électrinette H de deuxième rang sont les suivantes : 

• 力
𝐻𝐵

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐵⋅𝑘𝑒𝐻𝐵⋅𝑒

2⋅𝐷𝐻𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐵
3  

• 力
𝐻𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐶⋅𝑘𝑒𝐻𝐶⋅𝑒

2⋅𝐷𝐻𝐶⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐶
3  

• 力
𝐻𝐷

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐷⋅𝑘𝑒𝐻𝐷⋅𝑒

2⋅𝐷𝐻𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐷
3  

• 力
𝐻𝐸

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻𝐸⋅𝑘𝑒𝐻𝐸⋅𝑒

2⋅𝐷𝐻𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐸
3  

• 力
𝐻Λ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻Λ⋅𝑘𝑒𝐻Λ⋅𝑒

2⋅𝐷𝐻Λ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Λ
3  

• 力
𝐻Π

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻Π⋅𝑘𝑒𝐻Π⋅𝑒

2⋅𝐷𝐻Π⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Π
3  

• 力
𝐻Ψ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐻Ψ⋅𝑘𝑒𝐻Ψ⋅𝑒

2⋅𝐷𝐻Ψ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻Ψ
3  

• 力
𝐻Θ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐻Θ⋅𝑘𝑒𝐻Θ⋅𝑒

2⋅𝐷𝐻Θ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Θ
3  

Les forces de deuxième rang sont négligeables pour les mêmes raisons que précédemment. 

Déterminer les coefficients : 

𝑘𝑒𝐻? = 𝑘𝑒
中
𝐻

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛𝐻? = 10
−
𝐷𝐻?
𝑟
⋅100 + 10−21 

Avec ? = I, J, A, F, Γ, Σ, Ω, Φ. 

Sachant que : 

中
𝐼
=中

𝐽
=中

𝐴
=中

𝛤
=中

𝛴
=中

𝛺
=中

𝛷
=中

𝐹
 

On a donc : 

𝑘𝑒𝐻𝐼 = 𝑘𝑒𝐻𝐽 = 𝑘𝑒𝐻𝐴 = 𝑘𝑒𝐻𝛤 = 𝑘𝑒𝐻𝛴 = 𝑘𝑒𝐻𝛺 = 𝑘𝑒𝐻𝛷 = 𝑘𝑒𝐻𝐹 = 𝑘𝑒𝐹𝐻 
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Les forces électriques subies par l’électrinette B de premier rang sont les suivantes : 

• 力
𝐵𝐹

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐹⋅𝑘𝑒𝐵𝐹⋅𝑒

2⋅𝐷𝐵𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐵𝐹
3  

• 力
𝐵𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐴⋅𝑘𝑒𝐵𝐴⋅𝑒

2⋅𝐷𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐴
3  

• 力
𝐵𝐷

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐷⋅𝑘𝑒𝐵𝐷⋅𝑒

2⋅𝐷𝐵𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐷
3  

• 力
𝐵𝐸

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐸⋅𝑘𝑒𝐵𝐸⋅𝑒

2⋅𝐷𝐵𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐸
3  

Les forces électriques subies par l’électrinette B de deuxième rang sont les suivantes : 

• 力
𝐵𝐼

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐵𝐼⋅𝑘𝑒𝐵𝐼⋅𝑒

2⋅𝐷𝐵𝐼⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐼
3  

• 力
𝐵𝐽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐵𝐽⋅𝑘𝑒𝐵𝐽⋅𝑒

2⋅𝐷𝐵𝐽⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐵𝐽
3  

• 力
𝐵𝐺

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐺⋅𝑘𝑒𝐵𝐺⋅𝑒

2⋅𝐷𝐵𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐺
3  

• 力
𝐵𝐻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐵𝐻⋅𝑘𝑒𝐵𝐻⋅𝑒

2⋅𝐷𝐵𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐻
3  

Les forces de deuxième rang ainsi que celles de troisième rang sont négligeables pour les mêmes 

raisons que précédemment. 

Déterminer les coefficients : 

𝑘𝑒𝐵? = 𝑘𝑒
中
𝐵

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛𝐵? = 10
−
𝐷𝐵?
𝑟
⋅100 + 10−21 

Avec ? = F, A, D, E. 

Sachant que : 

中
𝐴
=中

𝐹
 

中
𝐵
=中

𝐷
=中

𝐸
=中

𝐻
 

On a donc : 

𝑘𝑒𝐵𝐴 = 𝑘𝑒𝐵𝐹 = 𝑘𝑒𝐹𝐻 

𝑘𝑒𝐵𝐷 = 𝑘𝑒𝐵𝐸 = 𝑘𝑒𝐻𝐻 = 𝑘𝑒
中
𝐻

2

中
𝑟𝑒𝑓

2 = 9 ⋅ 𝑘𝑒𝐹𝐻 = 598,819656066 ⋅ 10
9 

 

Les forces électriques subies par l’électrinette C de premier rang sont les suivantes : 

• 力
𝐶𝐹

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐹⋅𝑘𝑒𝐶𝐹⋅𝑒

2⋅𝐷𝐶𝐹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐶𝐹
3  

• 力
𝐶𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐴⋅𝑘𝑒𝐶𝐴⋅𝑒

2⋅𝐷𝐶𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐶𝐴
3  
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• 力
𝐶𝐷

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐷⋅𝑘𝑒𝐶𝐷⋅𝑒

2⋅𝐷𝐶𝐷⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐷
3  

• 力
𝐶𝐸

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐸⋅𝑘𝑒𝐶𝐸⋅𝑒

2⋅𝐷𝐶𝐸⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐶𝐸
3  

Les forces électriques subies par l’électrinette C de deuxième rang sont les suivantes : 

• 力
𝐶𝐼

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐶𝐼⋅𝑘𝑒𝐶𝐼⋅𝑒

2⋅𝐷𝐶𝐼⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐼
3  

• 力
𝐶𝐽

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐶𝐽⋅𝑘𝑒𝐶𝐽⋅𝑒

2⋅𝐷𝐶𝐽⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐽
3  

• 力
𝐶𝐺

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐺⋅𝑘𝑒𝐶𝐺⋅𝑒

2⋅𝐷𝐶𝐺⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐶𝐺
3  

• 力
𝐶𝐻

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛𝐶𝐻⋅𝑘𝑒𝐶𝐻⋅𝑒

2⋅𝐷𝐶𝐻⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐻
3  

Les forces de deuxième rang ainsi que celles de troisième rang sont négligeables pour les mêmes 

raisons que précédemment. 

Déterminer les coefficients : 

𝑘𝑒𝐶? = 𝑘𝑒
中
𝐶

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛𝐶? = 10
−
𝐷𝐶?
𝑟
⋅100 + 10−21 

Avec ? = F, A, D, E. 

Sachant que : 

中
𝐴
=中

𝐹
 

中
𝐶
=中

𝐷
=中

𝐸
=中

𝐻
 

On a donc : 

𝑘𝑒𝐶𝐴 = 𝑘𝑒𝐶𝐹 = 𝑘𝑒𝐹𝐻 

𝑘𝑒𝐶𝐷 = 𝑘𝑒𝐶𝐸 = 𝑘𝑒𝐻𝐻 

 

Les forces électriques subies par l’électrinette Σ de premier rang sont les suivantes : 

• 力
ΣG

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΣG⋅𝑘𝑒ΣG⋅𝑒

2⋅𝐷ΣG⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΣG
3  

• 力
ΣH

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΣH⋅𝑘𝑒ΣH⋅𝑒

2⋅𝐷ΣH⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣH
3  

• 力
ΣΦ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΣΦ⋅𝑘𝑒ΣΦ⋅𝑒

2⋅𝐷ΣΦ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣΦ
3  

• 力
ΣΩ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΣΩ⋅𝑘𝑒ΣΩ⋅𝑒

2⋅𝐷ΣΩ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣΩ
3  

Les forces électriques subies par l’électrinette Σ de deuxième rang sont les suivantes : 

• 力
ΣF

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛ΣF⋅𝑘𝑒ΣF⋅𝑒

2⋅𝐷ΣF⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΣF
3  
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• 力
ΣA

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΣA⋅𝑘𝑒ΣA⋅𝑒

2⋅𝐷ΣA⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΣA
3  

• 力
ΣI

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛ΣI⋅𝑘𝑒ΣI⋅𝑒

2⋅𝐷ΣI⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣI
3  

• 力
ΣJ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛ΣJ⋅𝑘𝑒ΣJ⋅𝑒

2⋅𝐷ΣJ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣJ
3  

Les forces de deuxième rang ainsi que celles de troisième rang sont négligeables pour les mêmes 

raisons que précédemment. 

Déterminer les coefficients : 

𝑘𝑒Σ? = 𝑘𝑒
中
Σ

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛Σ? = 10
−
𝐷Σ?
𝑟
⋅100 + 10−21 

Avec ? = G, H, Φ, Ω. 

Sachant que : 

中
𝐺
=中

𝐻
 

中
Φ
=中

Ω
=中

Σ
=中

𝐹
 

On a donc : 

𝑘𝑒ΣG = 𝑘𝑒ΣH = 𝑘𝑒𝐹𝐻 

𝑘𝑒ΣΩ = 𝑘𝑒ΣΦ = 𝑘𝑒𝐹𝐹 

 

Les forces électriques subies par l’électrinette Γ de premier rang sont les suivantes : 

• 力
ΓG

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓG⋅𝑘𝑒ΓG⋅𝑒

2⋅𝐷ΓG⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΓG
3  

• 力
ΓH

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓH⋅𝑘𝑒ΓH⋅𝑒

2⋅𝐷ΓH⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΓH
3  

• 力
ΓΦ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓΦ⋅𝑘𝑒ΓΦ⋅𝑒

2⋅𝐷ΓΦ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓΦ
3  

• 力
ΓΩ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓΩ⋅𝑘𝑒ΓΩ⋅𝑒

2⋅𝐷ΓΩ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΓΩ
3  

Les forces électriques subies par l’électrinette Γ de deuxième rang sont les suivantes : 

• 力
ΓF

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛ΓF⋅𝑘𝑒ΓF⋅𝑒

2⋅𝐷ΓF⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝐷ΓF
3  

• 力
ΓA

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓA⋅𝑘𝑒ΓA⋅𝑒

2⋅𝐷ΓA⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷ΓA
3  

• 力
ΓI

⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓI⋅𝑘𝑒ΓI⋅𝑒

2⋅𝐷ΓI⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓI
3  

• 力
ΓJ

⃗⃗ ⃗⃗ ⃗⃗  ⃗
=
𝑘𝑛ΓJ⋅𝑘𝑒ΓJ⋅𝑒

2⋅𝐷ΓJ⃗⃗ ⃗⃗⃗⃗  ⃗

𝐷ΓJ
3  

Les forces de deuxième rang ainsi que celles de troisième rang sont négligeables pour les mêmes 

raisons que précédemment. 
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Déterminer les coefficients : 

𝑘𝑒Γ? = 𝑘𝑒
中
Γ

中
𝑟𝑒𝑓

⋅
中
?

中
𝑟𝑒𝑓

 

𝑘𝑛Γ? = 10
−
𝐷Γ?
𝑟
⋅100 + 10−21 

Avec ? = G, H, Φ, Ω. 

Sachant que : 

中
𝐺
=中

𝐻
 

中
Φ
=中

Ω
=中

Γ
=中

𝐹
 

On a donc : 

𝑘𝑒ΓG = 𝑘𝑒ΓH = 𝑘𝑒𝐹𝐻 

𝑘𝑒ΓΩ = 𝑘𝑒ΓΦ = 𝑘𝑒𝐹𝐹 

 

4.8.4.5 Etablir les équations dynamiques régissant chaque électrinette 

Au sein de la nucléonette, on suppose que chaque charginette se déplace le long de son axe de 

symétrie. Il s’agit des axes suivants : 

1. l’axe O1Z1 pour la charginette AF,  

2. l’axe O2Z2 pour la charginette IJ,  

3. l’axe O3Z3 pour la charginette GH.  

4. l’axe O4Z4 pour la charginette BC 

5. l’axe O5Z5 pour la charginette DE 

6. l’axe O6Z6 pour la charginette ΓΣ 

7. l’axe O7Z7 pour la charginette ΦΩ 

8. l’axe O8Z8 pour la charginette ΛΠ 

9. l’axe O9Z9 pour la charginette ΘΨ 

Par symétrie, les équations régissant les électrinettes se regroupent comme suit : 

1. équation 1 : les électrinettes A, F, I et J obéissent à la première équation de masse 中 F# 

2. équation 2 : les électrinettes G et H obéissent à la deuxième équation de masse 中 H#. 

3. équation 3 : les électrinettes B, C, D, E, Λ, Π, Θ et Ψ obéissent à la troisième équation de 

masse 中 B#. 

4. équation 4 : les électrinettes Γ, Σ, Φ et Ω obéissent à la quatrième équation de masse 中

Σ#. 

Projeter l’équation dynamique des électrinettes F et A sur l’axe O1Z1 : 

𝑚𝐹𝐴 ⋅ 𝑧1̈ =力
𝑒𝑧1

 

Équation 26 - équation différentielle 1 de la nucléonette 

Où : 
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• mFA : est la masse globale de l’électrinette F + la masse globale de l’électrinette A. Pour 

une vitesse linéaire très inférieure à c, mF = 中 F# et mA = 中 F#. 

• 力 ez1 : est la force électrique subie par l’électrinette F + la force électrique subie par 

l’électrinette A sur l’axe O1Z1. 

La force 力
𝐹

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette F est la suivante : 

力
𝐹

⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐹𝐼𝑘𝑒𝐹𝐼𝑒

2𝐷𝐹𝐼⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐹𝐼
3 + 𝛽3

−
𝑘𝑛𝐹𝐽𝑘𝑒𝐹𝐽𝑒

2𝐷𝐹𝐽⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐹𝐽
3 + 𝛽3

+
𝑘𝑛𝐹𝐺𝑘𝑒𝐹𝐺𝑒

2𝐷𝐹𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐺
3 + 𝛽3

−
𝑘𝑛𝐹𝐻𝑘𝑒𝐹𝐻𝑒

2𝐷𝐹𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐻
3 + 𝛽3

−
𝑘𝑛𝐹𝐵𝑘𝑒𝐹𝐵𝑒

2𝐷𝐹𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐵
3 + 𝛽3

+
𝑘𝑛𝐹𝐶𝑘𝑒𝐹𝐶𝑒

2𝐷𝐹𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐶
3 + 𝛽3

−
𝑘𝑛𝐹𝐷𝑘𝑒𝐹𝐷𝑒

2𝐷𝐹𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐷
3 + 𝛽3

+
𝑘𝑛𝐹𝐸𝑘𝑒𝐹𝐸𝑒

2𝐷𝐹𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐹𝐸
3 + 𝛽3

 

La force 力
𝐴

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette A est la suivante : 

力
𝐴

⃗⃗ ⃗⃗ ⃗⃗  
= −

𝑘𝑛𝐴𝐼𝑘𝑒𝐴𝐼𝑒
2𝐷𝐴𝐼⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐴𝐼
3 + 𝛽3

+
𝑘𝑛𝐴𝐽𝑘𝑒𝐴𝐽𝑒

2𝐷𝐴𝐽⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐴𝐽
3 + 𝛽3

−
𝑘𝑛𝐴𝐺𝑘𝑒𝐴𝐺𝑒

2𝐷𝐴𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐺
3 + 𝛽3

+
𝑘𝑛𝐴𝐻𝑘𝑒𝐴𝐻𝑒

2𝐷𝐴𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐻
3 + 𝛽3

+
𝑘𝑛𝐴𝐵𝑘𝑒𝐴𝐵𝑒

2𝐷𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐵
3 + 𝛽3

−
𝑘𝑛𝐴𝐶𝑘𝑒𝐴𝐶𝑒

2𝐷𝐴𝐶⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐶
3 + 𝛽3

+
𝑘𝑛𝐴𝐷𝑘𝑒𝐴𝐷𝑒

2𝐷𝐴𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐷
3 + 𝛽3

−
𝑘𝑛𝐴𝐸𝑘𝑒𝐴𝐸𝑒

2𝐷𝐴𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐴𝐸
3 + 𝛽3

 

La force 力
𝐹𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 subie par la charginette FA est la suivante : 

力
𝐹𝐴

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=   力

𝐹

⃗⃗ ⃗⃗ ⃗⃗  
+   力

𝐴

⃗⃗ ⃗⃗ ⃗⃗  
 

En projetant sur l’axe O1Z1 : qui a pour vecteur : 

𝑂1𝑂⃗⃗⃗⃗⃗⃗⃗⃗ 

‖𝑂1𝑂⃗⃗⃗⃗⃗⃗⃗⃗ ‖
= (

0
0
−1
) 

Sachant que l’axe OZ est colinéaire à l’axe O1Z1, on projette sur l’axe OZ : 
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力
𝐹𝐴𝑧

=

𝑘𝑛𝐹𝐼𝑘𝑒𝐹𝐼𝑒
2 [
𝑟√3
2
cos(𝜔𝑡) −

3𝑧
2
]

𝐷𝐹𝐼
3 + 𝛽3

+

𝑘𝑛𝐹𝐽𝑘𝑒𝐹𝐽 [
𝑟√3
2
cos(𝜔𝑡) +

3𝑧
2
]

𝐷𝐹𝐽
3 + 𝛽3

−

𝑘𝑛𝐹𝐺𝑘𝑒𝐹𝐺𝑒
2 [
𝑟√3
2 cos(3𝜔𝑡) +

𝑧0
2 −

𝑧3
2 + 𝑧]

𝐷𝐹𝐺
3 + 𝛽3

−

𝑘𝑛𝐹𝐻𝑘𝑒𝐹𝐻𝑒
2 [
𝑟√3
2
cos(3𝜔𝑡) −

𝑧0
2
+
𝑧3
2
− 𝑧]

𝐷𝐹𝐻
3 + 𝛽3

−

𝑘𝑛𝐹𝐵𝑘𝑒𝐹𝐵𝑒
2 [
𝑟√3
2
sin(3𝜔𝑡) +

𝑧4
2
+
√3
2
𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐹𝐵
3 + 𝛽3

−

𝑘𝑛𝐹𝐶𝑘𝑒𝐹𝐶𝑒
2 [𝑧 +

𝑟√3
2
sin(3𝜔𝑡) −

𝑧4
2
−
√3
2
𝑟 − Δ − 𝑧0]

𝐷𝐹𝐶
3 + 𝛽3

+

𝑘𝑛𝐹𝐷𝑘𝑒𝐹𝐷𝑒
2 [𝑧 +

𝑟√3
2
sin(3𝜔𝑡) −

𝑧4
2
−
√3
2
𝑟 − Δ − 𝑧0]

𝐷𝐹𝐷
3 + 𝛽3

+

𝑘𝑛𝐹𝐸𝑘𝑒𝐹𝐸𝑒
2 [
𝑟√3
2
sin(3𝜔𝑡) +

𝑧4
2
+
√3
2
𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐹𝐸
3 + 𝛽3

−

𝑘𝑛𝐴𝐼𝑘𝑒𝐴𝐼𝑒
2 [
𝑟√3
2 cos(𝜔𝑡) −

3𝑧
2 ]

𝐷𝐴𝐼
3 + 𝛽3

−

𝑘𝑛𝐴𝐽𝑘𝑒𝐴𝐽𝑒
2 [
𝑟√3
2 cos(𝜔𝑡) +

3𝑧
2 ]

𝐷𝐴𝐽
3 + 𝛽3

+

𝑘𝑛𝐴𝐺𝑘𝑒𝐴𝐺𝑒
2 [
𝑟√3
2
cos(3𝜔𝑡) +

𝑧0
2
−
𝑧3
2
+ 𝑧]

𝐷𝐴𝐺
3 + 𝛽3

+

𝑘𝑛𝐴𝐻𝑘𝑒𝐴𝐻𝑒
2 [
𝑟√3
2 cos(3𝜔𝑡) −

𝑧0
2 +

𝑧3
2 − 𝑧]

𝐷𝐴𝐻
3 + 𝛽3

+

𝑘𝑛𝐴𝐵𝑘𝑒𝐴𝐵𝑒
2 [
𝑟√3
2 sin(3𝜔𝑡) +

𝑧4
2 +

√3
2 𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐴𝐵
3 + 𝛽3

−

𝑘𝑛𝐴𝐶𝑘𝑒𝐴𝐶𝑒
2 [−

𝑟√3
2 sin(3𝜔𝑡) +

𝑧4
2 +

√3
2 𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐴𝐶
3 + 𝛽3

+

𝑘𝑛𝐴𝐷𝑘𝑒𝐴𝐷𝑒
2 [−

𝑟√3
2 sin(3𝜔𝑡) +

𝑧4
2 +

√3
2 𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐴𝐷
3 + 𝛽3

−

𝑘𝑛𝐴𝐸𝑘𝑒𝐴𝐸𝑒
2 [
𝑟√3
2 sin(3𝜔𝑡) +

𝑧4
2 +

√3
2 𝑟 + Δ + 𝑧0 − 𝑧]

𝐷𝐴𝐸
3 + 𝛽3

 

 

En faisant un changement d’échelle, l’équation devient : 
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中
𝐹𝐴#𝑥

⋅ 𝑧𝑥̈ =

𝑘𝑛𝐹𝐼𝑥𝑘𝑒𝐹𝐼𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) −

3𝑧𝑥
2
]

𝐷𝐹𝐼𝑥
3 + 𝛽𝑥

3 +

𝑘𝑛𝐹𝐽𝑥𝑘𝑒𝐹𝐽𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) +

3𝑧𝑥
2
]

𝐷𝐹𝐽𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐺𝑥𝑘𝑒𝐹𝐺𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(3𝜔𝑥𝑡𝑥) +

𝑧0𝑥
2
−
𝑧3𝑥
2
+ 𝑧𝑥]

𝐷𝐹𝐺𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐻𝑥𝑘𝑒𝐹𝐻𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(3𝜔𝑥𝑡𝑥) −

𝑧0𝑥
2
+
𝑧3𝑥
2
− 𝑧𝑥]

𝐷𝐹𝐻𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐵𝑥𝑘𝑒𝐹𝐵𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2
+
√3
2
𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐹𝐵𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐹𝐶𝑥𝑘𝑒𝐹𝐶𝑥𝑒𝑥
2 [−

𝑟𝑥√3
2
sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2
+
√3
2
𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐹𝐶𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐹𝐷𝑥𝑘𝑒𝐹𝐷𝑥𝑒𝑥
2 [−

𝑟𝑥√3
2
sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2
+
√3
2
𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐹𝐷𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐹𝐸𝑥𝑘𝑒𝐹𝐸𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2 +

√3
2 𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐹𝐸𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐴𝐼𝑥𝑘𝑒𝐴𝐼𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(𝜔𝑥𝑡𝑥) −

3𝑧𝑥
2 ]

𝐷𝐴𝐼𝑥
3 + 𝛽𝑥

3 −

𝑘𝑛𝐴𝐽𝑥𝑘𝑒𝐴𝐽𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(𝜔𝑥𝑡𝑥) +

3𝑧𝑥
2 ]

𝐷𝐴𝐽𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐺𝑥𝑘𝑒𝐴𝐺𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(3𝜔𝑥𝑡𝑥) +

𝑧0𝑥
2 −

𝑧3𝑥
2 + 𝑧𝑥]

𝐷𝐴𝐺𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐻𝑥𝑘𝑒𝐴𝐻𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(3𝜔𝑥𝑡𝑥) −

𝑧0𝑥
2 +

𝑧3𝑥
2 − 𝑧𝑥]

𝐷𝐴𝐻𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐵𝑥𝑘𝑒𝐴𝐵𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2 +

√3
2 𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐴𝐵𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐴𝐶𝑥𝑘𝑒𝐴𝐶𝑥𝑒𝑥
2 [−

𝑟𝑥√3
2 sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2 +

√3
2 𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐴𝐶𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐴𝐷𝑥𝑘𝑒𝐴𝐷𝑥𝑒𝑥
2 [−

𝑟𝑥√3
2 sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2 +

√3
2 𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐴𝐷𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐴𝐸𝑥𝑘𝑒𝐴𝐸𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 sin(3𝜔𝑥𝑡𝑥) +

𝑧4𝑥
2 +

√3
2 𝑟𝑥 + Δ𝑥 + 𝑧0𝑥 − 𝑧𝑥]

𝐷𝐴𝐸𝑥
3 + 𝛽𝑥

3  

 

Projeter l’équation dynamique de l’électrinette H sur l’axe O3Z3 : qui a pour vecteur : 
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𝑂3𝑂⃗⃗⃗⃗⃗⃗ ⃗⃗ 

‖𝑂3𝑂⃗⃗⃗⃗⃗⃗ ⃗⃗ ‖
=

(

 
 

−√3

2
0
1

2 )

 
 

 

 

𝑚ℎ ⋅ 𝑧3̈ =力
𝑒𝑧3

 

Équation 27 - équation différentielle 2 de la nucléonette 

Où : 

• mh : est la masse globale de l’électrinette H. Pour une vitesse linéaire très inférieure à c, 

mh = 中 H# 

• 力 ez3 : est la force électrique subie par l’électrinette H sur l’axe O3Z3. 

La force 力
ℎ

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette H est la suivante : 

力
ℎ

⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛𝐻𝐴𝑘𝑒𝐻𝐴𝑒

2𝐷𝐻𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐴
3 + 𝛽3

−
𝑘𝑛𝐻𝐹𝑘𝑒𝐻𝐹𝑒

2𝐷𝐻𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻𝐹
3 + 𝛽3

+
𝑘𝑛𝐻𝐼𝑘𝑒𝐻𝐼𝑒

2𝐷𝐻𝐼⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻𝐼
3 + 𝛽3

−
𝑘𝑛𝐻𝐽𝑘𝑒𝐻𝐽𝑒

2𝐷3ℎ⃗⃗ ⃗⃗⃗⃗  ⃗

𝐷𝐻𝐽
3 + 𝛽3

+
𝑘𝑛𝐻Γ𝑘𝑒𝐻Γ𝑒

2𝐷𝐻Γ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Γ
3 + 𝛽3

−
𝑘𝑛𝐻Σ𝑘𝑒𝐻Σ𝑒

2𝐷𝐻Σ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐻Σ
3 + 𝛽3

+
𝑘𝑛𝐻Ω𝑘𝑒𝐻Ω𝑒

2𝐷𝐻Ω⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝐷𝐻Ω
3 + 𝛽3

−
𝑘𝑛𝐻Φ𝑘𝑒𝐻Φ𝑒

2𝐷𝐻Φ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷𝐻Φ
3 + 𝛽3

 

En projetant sur l’axe O3Z3 : 

力
ℎ𝑧3

=

𝑘𝑛𝐻𝐴𝑘𝑒𝐻𝐴𝑒
2 [𝑧0 − 𝑧3 −

𝑟√3
2 cos(𝜔𝑡) +

𝑧
2]

𝐷𝐻𝐴
3 + 𝛽3

−

𝑘𝑛𝐻𝐹𝑘𝑒𝐻𝐹𝑒
2 [𝑧0 − 𝑧3 +

𝑟√3
2 cos(𝜔𝑡) +

𝑧
2]

𝐷𝐻𝐹
3 + 𝛽3

+

𝑘𝑛𝐻𝐼𝑘𝑒𝐻𝐼𝑒
2 [
𝑟√3
2
cos(𝜔𝑡) +

𝑧
2
+ 𝑧0 − 𝑧3]

𝐷𝐻𝐼
3 + 𝛽3

−

𝑘𝑛𝐻𝐽𝑘𝑒𝐻𝐽𝑒
2 [−

𝑟√3
2 cos(𝜔𝑡) +

𝑧
2 + 𝑧0 − 𝑧3]

𝐷𝐻𝐽
3 + 𝛽3

+

𝑘𝑛𝐻Γ𝑘𝑒𝐻Γ𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) −
𝑧6
2 − 𝑟

√3
2 − Δ6 − 𝑧3]

𝐷𝐻Γ
3 + 𝛽3

−

𝑘𝑛𝐻Σ𝑘𝑒𝐻Σ𝑒
2 [−𝑟

√3
2 ⋅ sin

(𝜔𝑡) −
𝑧6
2 − 𝑟

√3
2 − Δ6 − 𝑧3]

𝐷𝐻Σ
3 + 𝛽3

+

𝑘𝑛𝐻Ω𝑘𝑒𝐻Ω𝑒
2 [−𝑟

√3
2 ⋅ sin

(𝜔𝑡) −
𝑧6
2 − 𝑟

√3
2 − Δ6 − 𝑧3]

𝐷𝐻Ω
3 + 𝛽3

−

𝑘𝑛𝐻Φ𝑘𝑒𝐻Φ𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) −
𝑧6
2 − 𝑟

√3
2 − Δ6 − 𝑧3]

𝐷𝐻Φ
3 + 𝛽3
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En faisant un changement d’échelle, l’équation devient : 

中
𝐻#
⋅ 𝑧3𝑥̈ = −

𝑘𝑛𝐻𝐴𝑥𝑘𝑒𝐻𝐴𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) − 𝑧0𝑥 + 𝑧3𝑥 −

𝑧𝑥
2
]

𝐷𝐻𝐴𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐻𝐹𝑥𝑘𝑒𝐻𝐹𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(𝜔𝑥𝑡𝑥) + 𝑧0𝑥 − 𝑧3𝑥 +

𝑧𝑥
2 ]

𝐷𝐻𝐹𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐻𝐼𝑥𝑘𝑒𝐻𝐼𝑥𝑒𝑥
2 [
𝑟𝑥√3
2
cos(𝜔𝑥𝑡𝑥) +

𝑧𝑥
2
+ 𝑧0𝑥 − 𝑧3𝑥]

𝐷𝐻𝐼𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐻𝐽𝑥𝑘𝑒𝐻𝐽𝑥𝑒𝑥
2 [
𝑟𝑥√3
2 cos(𝜔𝑥𝑡𝑥) −

𝑧𝑥
2 − 𝑧0𝑥 + 𝑧3𝑥]

𝐷𝐻𝐽𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐻Γx𝑘𝑒𝐻Γ𝑥𝑒𝑥
2 [𝑟𝑥

√3
2
sin(𝜔𝑥𝑡𝑥) −

𝑧6𝑥
2
− 𝑟𝑥

√3
2
− Δ6𝑥 − 𝑧3𝑥]

𝐷𝐻Γ𝑥
3 + 𝛽𝑥

3

+

𝑘𝑛𝐻Σx𝑘𝑒𝐻Σ𝑥𝑒𝑥
2 [𝑟𝑥

√3
2 sin

(𝜔𝑥𝑡𝑥) +
𝑧6𝑥
2 + 𝑟𝑥

√3
2 + Δ6𝑥 + 𝑧3𝑥]

𝐷𝐻Σ𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐻Ωx𝑘𝑒𝐻Ω𝑥𝑒𝑥
2 [𝑟𝑥

√3
2
sin(𝜔𝑥𝑡𝑥) +

𝑧6𝑥
2
+ 𝑟𝑥

√3
2
+ Δ6𝑥 + 𝑧3𝑥]

𝐷𝐻Ω𝑥
3 + 𝛽𝑥

3

−

𝑘𝑛𝐻Φ𝑥𝑘𝑒𝐻Φ𝑥𝑒𝑥
2 [𝑟𝑥

√3
2
sin(𝜔𝑥𝑡𝑥) −

𝑧6𝑥
2
− 𝑟𝑥

√3
2
− Δ6𝑥 − 𝑧3𝑥]

𝐷𝐻Φ𝑥
3 + 𝛽𝑥

3  

 

Projeter l’équation dynamique des électrinettes B et C sur l’axe O4Z4 : 

𝑚𝐵𝐶 ⋅ 𝑧4̈ =力
𝑒𝑧4

 

Équation 28 - équation différentielle 3 de la nucléonette 

Où : 

• mBC : est la masse globale de l’électrinette B + la masse globale de l’électrinette C. Pour 

une vitesse linéaire très inférieure à c, mB = 中 B# et mC = 中 C#. 

• 力 ez4 : est la force électrique subie par l’électrinette B + la force électrique subie par 

l’électrinette C sur l’axe O4Z4. 

La force 力
𝑏

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette B est la suivante : 

力
𝑏

⃗⃗ ⃗⃗ ⃗⃗  
= −

𝑘𝑛𝐵𝐹𝑘𝑒𝐵𝐹𝑒
2𝐷𝐵𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐹
3 + 𝛽3

+
𝑘𝑛𝐵𝐴𝑘𝑒𝐵𝐴𝑒

2𝐷𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐴
3 + 𝛽3

−
𝑘𝑛𝐵𝐷𝑘𝑒𝐵𝐷𝑒

2𝐷𝐵𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐷
3 + 𝛽3

+
𝑘𝑛𝐵𝐸𝑘𝑒𝐵𝐸𝑒

2𝐷𝐵𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐸
3 + 𝛽3

 

La force 力
𝑐

⃗⃗ ⃗⃗ ⃗⃗ 
 subie par l’électrinette C est la suivante : 
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力
𝑐

⃗⃗ ⃗⃗ ⃗⃗ 
=
𝑘𝑛𝐶𝐹𝑘𝑒𝐶𝐹𝑒

2𝐷𝐶𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐹
3 + 𝛽3

−
𝑘𝑛𝐶𝐴𝑘𝑒𝐶𝐴𝑒

2𝐷𝐶𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐴
3 + 𝛽3

+
𝑘𝑛𝐶𝐷𝑘𝑒𝐶𝐷𝑒

2𝐷𝐶𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐷
3 + 𝛽3

−
𝑘𝑛𝐶𝐸𝑘𝑒𝐶𝐸𝑒

2𝐷𝐶𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐸
3 + 𝛽3

 

La force 力
𝐵𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
 subie par la charginette BC est la suivante : 

力
𝐵𝐶

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
= −

𝑘𝑛𝐵𝐹𝑘𝑒𝐵𝐹𝑒
2𝐷𝐵𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐹
3 + 𝛽3

+
𝑘𝑛𝐵𝐴𝑘𝑒𝐵𝐴𝑒

2𝐷𝐵𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐴
3 + 𝛽3

−
𝑘𝑛𝐵𝐷𝑘𝑒𝐵𝐷𝑒

2𝐷𝐵𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐷
3 + 𝛽3

+
𝑘𝑛𝐵𝐸𝑘𝑒𝐵𝐸𝑒

2𝐷𝐵𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐵𝐸
3 + 𝛽3

+
𝑘𝑛𝐶𝐹𝑘𝑒𝐶𝐹𝑒

2𝐷𝐶𝐹⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐹
3 + 𝛽3

−
𝑘𝑛𝐶𝐴𝑘𝑒𝐶𝐴𝑒

2𝐷𝐶𝐴⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐴
3 + 𝛽3

+
𝑘𝑛𝐶𝐷𝑘𝑒𝐶𝐷𝑒

2𝐷𝐶𝐷⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐷
3 + 𝛽3

−
𝑘𝑛𝐶𝐸𝑘𝑒𝐶𝐸𝑒

2𝐷𝐶𝐸⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷𝐶𝐸
3 + 𝛽3

 

 

En projetant sur l’axe O4Z4 dont le vecteur est : 

𝑘4 (

𝑥4
𝑦4
𝑧4
) =

(

 
 

−1 0 0

0 −
1

2
−
√3

2

0 −
√3

2

1

2 )

 
 
(
0
0
1
) =

(

 
 
−

0

√3

2
1

2 )

 
 

 

 

 

力
𝐵𝐶𝑧4

=

𝑘𝑛𝐵𝐹𝑘𝑒𝐵𝐹𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) + 𝑧4 +
Δ
2 +

𝑧0
2 −

𝑧
2 +

√3
2 𝑟]

𝐷𝐵𝐹
3 + 𝛽3

+

𝑘𝑛𝐵𝐴𝑘𝑒𝐵𝐴𝑒
2 [𝑟

√3
2
⋅ sin(𝜔𝑡) − 𝑧4 −

Δ
2
−
𝑧0
2
+
𝑧
2
−
√3
2
𝑟]

𝐷𝐵𝐴
3 + 𝛽3

−

𝑘𝑛𝐵𝐷𝑘𝑒𝐵𝐷𝑒
2 [𝑟

√3
2 ⋅ sin

(3𝜔𝑡) −
3𝑧4
2 −

√3
2 𝑟]

𝐷𝐵𝐷
3 + 𝛽3

−

𝑘𝑛𝐵𝐸𝑘𝑒𝐵𝐸𝑒
2 [−𝑟

√3
2 ⋅ sin

(3𝜔𝑡) +
3𝑧4
2 +

√3
2 𝑟]

𝐷𝐵𝐸
3 + 𝛽3

−

𝑘𝑛𝐶𝐹𝑘𝑒𝐶𝐹𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) + 𝑧4 +
Δ
2 +

𝑧0
2 −

𝑧
2 +

√3
2 𝑟]

𝐷𝐶𝐹
3 + 𝛽3

−

𝑘𝑛𝐶𝐴𝑘𝑒𝐶𝐴𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) − 𝑧4 −
Δ
2 −

𝑧0
2 +

𝑧
2 −

√3
2 𝑟]

𝐷𝐶𝐴
3 + 𝛽3

+

𝑘𝑛𝐶𝐷𝑘𝑒𝐶𝐷𝑒
2 [−𝑟

√3
2 ⋅ sin

(3𝜔𝑡) −
3𝑧4
2 −

√3
2 𝑟]

𝐷𝐶𝐷
3 + 𝛽3

+

𝑘𝑛𝐶𝐸𝑘𝑒𝐶𝐸𝑒
2 [−𝑟

√3
2
⋅ sin(3𝜔𝑡) +

3𝑧4
2
+
√3
2
𝑟]

𝐷𝐶𝐸
3 + 𝛽3
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Projeter l’équation dynamique des électrinettes Σ et Γ sur l’axe O6Z6 : 

𝑚ΣΓ ⋅ 𝑧6̈ =力
𝑒𝑧6

 

Équation 29 - équation différentielle 4 de la nucléonette 

Où : 

• mΣΓ : est la masse globale de l’électrinette Σ + la masse globale de l’électrinette Γ. Pour 

une vitesse linéaire très inférieure à c, mΣ = 中 Σ# et mΓ = 中 Γ#. 

• 力 ez6 : est la force électrique subie par l’électrinette Σ + la force électrique subie par 

l’électrinette Γ sur l’axe O6Z6. 

La force 力
𝜎

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette Σ est la suivante : 

力
𝜎

⃗⃗ ⃗⃗ ⃗⃗  
= −

𝑘𝑛Σ𝐻𝑘𝑒Σ𝐻𝑒
2𝐷Σ𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Σ𝐻
3 + 𝛽3

+
𝑘𝑛Σ𝐺𝑘𝑒Σ𝐺𝑒

2𝐷Σ𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Σ𝐺
3 + 𝛽3

+
𝑘𝑛ΣΩ𝑘𝑒ΣΩ𝑒

2𝐷ΣΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣΩ
3 + 𝛽3

−
𝑘𝑛ΣΦ𝑘𝑒ΣΦ𝑒

2𝐷ΣΦ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝐷ΣΦ
3 + 𝛽3

 

La force 力
𝛾

⃗⃗ ⃗⃗ ⃗⃗  
 subie par l’électrinette Γ est la suivante : 

力
𝛾

⃗⃗ ⃗⃗ ⃗⃗  
=
𝑘𝑛Γ𝐻𝑘𝑒Γ𝐻𝑒

2𝐷Γ𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Γ𝐻
3 + 𝛽3

−
𝑘𝑛ΓG𝑘𝑒ΓG𝑒

2𝐷ΓG⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓG
3 + 𝛽3

−
𝑘𝑛ΓΩ𝑘𝑒ΓΩ𝑒

2𝐷ΓΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓΩ
3 + 𝛽3

+
𝑘𝑛ΓΦ𝑘𝑒ΓΦ𝑒

2𝐷ΓΦ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓΦ
3 + 𝛽3

 

La force 力
ΣΓ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
 subie par la charginette ΣΓ est la suivante : 

力
ΣΓ

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
= −

𝑘𝑛Σ𝐻𝑘𝑒Σ𝐻𝑒
2𝐷Σ𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Σ𝐻
3 + 𝛽3

+
𝑘𝑛Σ𝐺𝑘𝑒Σ𝐺𝑒

2𝐷Σ𝐺⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Σ𝐺
3 + 𝛽3

+
𝑘𝑛ΣΩ𝑘𝑒ΣΩ𝑒

2𝐷ΣΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΣΩ
3 + 𝛽3

−
𝑘𝑛ΣΦ𝑘𝑒ΣΦ𝑒

2𝐷ΣΦ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 

𝐷ΣΦ
3 + 𝛽3

+
𝑘𝑛Γ𝐻𝑘𝑒Γ𝐻𝑒

2𝐷Γ𝐻⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷Γ𝐻
3 + 𝛽3

−
𝑘𝑛ΓG𝑘𝑒ΓG𝑒

2𝐷ΓG⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓG
3 + 𝛽3

−
𝑘𝑛ΓΩ𝑘𝑒ΓΩ𝑒

2𝐷ΓΩ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓΩ
3 + 𝛽3

+
𝑘𝑛ΓΦ𝑘𝑒ΓΦ𝑒

2𝐷ΓΦ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝐷ΓΦ
3 + 𝛽3

 

 

En projetant sur l’axe O6Z6 dont le vecteur est : 

𝑘6 (

𝑥6
𝑦6
𝑧6
) =

(

 
 
 
 

1

2

−3

4

√3

4

0 −
1

2

−√3

2

√3

2

√3

4
−
1

4 )

 
 
 
 

(
0
0
1
) =

(

 
 
 
 

√3

4

−
√3

2

−
1

4 )
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力
ΣΓ𝑧6

=

𝑘𝑛Σ𝐻𝑘𝑒Σ𝐻𝑒
2 [𝑟

√3
2
⋅ sin(3𝜔𝑡) + 𝑧6 +

∆6
2
+
𝑧3
2
+
√3
2
𝑟]

𝐷Σ𝐻
3 + 𝛽3

+

𝑘𝑛Σ𝐺𝑘𝑒Σ𝐺𝑒
2 [𝑟

√3
2
⋅ sin(3𝜔𝑡) − 𝑧6 −

Δ6
2
−
𝑧3
2
−
√3
2
𝑟]

𝐷Σ𝐺
3 + 𝛽3

+

𝑘𝑛ΣΩ𝑘𝑒ΣΩ𝑒
2 [𝑟

√3
2 ⋅ sin

(𝜔𝑡) −
3𝑧6
2 −

√3
2 𝑟]

𝐷ΣΩ
3 + 𝛽3

+

𝑘𝑛ΣΦ𝑘𝑒ΣΦ𝑒
2 [𝑟

√3
2
⋅ sin(𝜔𝑡) +

3𝑧6
2
+
√3
2
𝑟]

𝐷ΣΦ
3 + 𝛽3

−

𝑘𝑛ΓH𝑘𝑒ΓH𝑒
2 [𝑟

√3
2 ⋅ sin

(3𝜔𝑡) + 𝑧6 +
Δ6
2 +

𝑧3
2 +

√3
2 𝑟]

𝐷ΓH
3 + 𝛽3

−

𝑘𝑛ΓG𝑘𝑒ΓG𝑒
2 [𝑟

√3
2
⋅ sin(3𝜔𝑡) − 𝑧6 −

Δ6
2
−
𝑧3
2
−
√3
2
𝑟]

𝐷ΓG
3 + 𝛽3

−

𝑘𝑛ΓΩ𝑘𝑒ΓΩ𝑒
2 [𝑟

√3
2
⋅ sin(𝜔𝑡) −

3𝑧6
2
−
√3
2
𝑟]

𝐷ΓΩ
3 + 𝛽3

−

𝑘𝑛ΓΦ𝑘𝑒ΓΦ𝑒
2 [𝑟

√3
2
⋅ sin(𝜔𝑡) +

3𝑧6
2
+
√3
2
𝑟]

𝐷ΓΦ
3 + 𝛽3

 

 

 

 

 

 

4.8.4.6 Résoudre  les équations différentielles à l’aide de l’outil progiciel Matlab-Simulink 

En résolvant les équations avec Simulink (fichier : 

nucleonette_r_036_zhf_8258_B_10_3_kn_21_U.slx), on obtient les courbes z, z3, z4  et z6 : 
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Figure 37 - Oscillation des charginettes de nucléonette 

Plus de détails sont donnés en : Appendice A.3. 

Les coefficients de chaque courbe sont : 

• Z-z0 : 10-5. 

• Z3 : 10-5. 

• Z4 : 10-5. 

• Z6 : 1. 

 

L’interprétation : 

1. Les trajectoires des 9 charginettes représentées par z, z3, z4 et z6 sont périodiques. La période 

T1x = 182248.8079 est celle de rotation de la charginette AF. 

2. Les amplitudes de déplacement des charginettes ax dans l’intervalle [1.279*10-12 ; 3.16*10-7] 

sont relativement faible par rapport à leur diamètre rx = 0.36373. 
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3. A tx = 0, (zx-z0x) = 0. Et z3x = 0. Les charginettes AF, GH et IJ sont en position la plus serrée pour 

la chrominette AFGHIJ du cœur de la nucléonette. Z4x = 1.326*10-13 et z6x = 6.764*10-8. Les 

chrominettes extérieures BCDEAF, ΣΓΩΦGH, et ΛΠΘΨIJ sont en expansion. 

4. Entre tx = 0 et tx = T1x/4, la charginette AF (zx), s’écarte d’abord légèrement de sa position 

limite intérieure, puis revient à cette position limite. C’est la même chose pour la charginette 

IJ (zx). La charginette GH (zx3), s’écarte progressivement de sa position limite intérieure z3x = 0 

vers z3x = -4.632*10-13. La charginette ΣΓ (zx6), s’écarte linéairement de sa position initiale z6x = 

6.764*10-8 vers z6x = 2.081*10-7. Il en est de même pour la charginette ΩΦ. La charginette BC 

(zx4), s’écarte linéairement de sa position initiale z4x = 1.326*10-13 vers z4x = 7.533*10-13 à tx = 

T1x/12. Puis revenir rapidement à la position z4x = 0 pour revenir progressivement vers z4x = 

9.506*10-13.  Il en est de même pour les charginettes DE, ΛΠ et ΘΨ. 

5. A tx = T1x/4, la charginette AF (zx), s’écarte très rapidement de sa position limite intérieure (zx-

z0x) = 0, vers la position la plus éloignée (zx-z0x) = 3.16*10-12. C’est la même chose pour la 

charginette IJ (zx). La charginette GH (zx3), s’écarte très rapidement de sa position z3x = -

4.632*10-13 vers z3x = -1.8*10-12 la limite extérieure. La chrominette AFGHIJ est en état le plus 

expansé. Pendant ce temps, la charginette BC (zx4), tombe rapidement de la position z4x = 

9.506*10-13 vers z4x = 0. Il en est de même pour les charginettes DE, ΛΠ et ΘΨ. Les 

chrominettes BCDEAF et ΛΠΘΨIJ sont en état le plus serré. La charginette ΣΓ (zx6), tombe 

rapidement de la position z6x = 2.081*10-7 vers z6x = 0. Il en est de même pour la charginette 

ΩΦ. La chrominette ΣΓΩΦGH est en état le plus serré. 

6. Entre tx = T1x/4 et tx = T1x/2, la charginette AF (zx), reste d’abord à sa position limite 

extérieure, puis s’écarte de cette position limite (zx-z0x) = 3.16*10-12 vers une position 

intermédiaire (zx-z0x) = 2.008*10-12. C’est la même chose pour la charginette IJ (zx). La 

charginette GH (zx3), s’écarte progressivement de sa position limite extérieure z3x = -1.8*10-12 

vers une position intermédiaire z3x = -1.325*10-13. La charginette ΣΓ (zx6), reste en position z6x 

= 0. Puis s’écarte linéairement de cette position z6x = 0 vers z6x = 6.99*10-8. Il en est de même 

pour la charginette ΩΦ. La charginette BC (zx4), s’écarte progressivement de la position z4x = 0 

vers z4x = 9.943*10-13 à tx = 5T1x/12. Puis revenir rapidement à la position z4x = 0.  Il en est de 

même pour les charginettes DE, ΛΠ et ΘΨ. 

7. A tx = T1x/2, la charginette AF (zx), tombe très rapidement de sa position intermédiaire (zx-z0x) 

= 2.008*10-12, vers la position limite intérieure (zx-z0x) = 0. C’est la même chose pour la 

charginette IJ (zx). La charginette GH (zx3), tombe très rapidement de sa position 

intermédiaire z3x = -1.325*10-13 vers z3x = 0 la limite intérieure. La chrominette AFGHIJ est en 

état le plus serré. Pendant ce temps, la charginette BC (zx4), reste à la position z4x = 0. Il en est 

de même pour les charginettes DE, ΛΠ et ΘΨ. Les chrominettes BCDEAF et ΛΠΘΨIJ ne sont 

pas en état limite. La charginette ΣΓ (zx6), garde sa position z6x = 6.99*10-8. Il en est de même 

pour la charginette ΩΦ. La chrominette ΣΓΩΦGH est en état intermédiaire. 

8. Entre tx = T1x/2 et tx = T1x, les charginettes AF (zx), IJ (zx) et GH (zx3), suivent sensiblement le 

même comportement que durant la première demi-période. Mais les charginettes BC (zx4), ΣΓ 

(zx6), ainsi que leurs équivalentes ont un comportement sensiblement différent de la 

première demi-période. 

9. Entre tx = T1x/2 et tx = 3T1x/4, la charginette BC (zx4) s’écarte progressivement de la position z4x 

= 0 vers z4x = 5.51*10-13 à tx = 7T1x/12. Puis revenir rapidement à la position z4x = 0.  Ensuite 

recommencer à s’écarter progressivement de la position z4x = 0 vers z4x = 1.271*10-12 à tx = 

3T1x/4. Il en est de même pour les charginettes DE, ΛΠ et ΘΨ. La charginette ΣΓ (zx6), continue 

de s’éloigner vers la position z6x = 2.32*10-7. 

10. A tx = 3T1x/4, la charginette BC (zx4), passe de la position z4x = 1.271*10-12 à z4x = 0. Il en est de 

même pour les charginettes DE, ΛΠ et ΘΨ. Les chrominettes BCDEAF et ΛΠΘΨIJ sont en état 
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limite intérieure. La charginette ΣΓ (zx6), passe de sa position z6x = 2.32*10-7 à z6x = 0. Il en est 

de même pour la charginette ΩΦ. La chrominette ΣΓΩΦGH est en état limite intérieure (le 

plus serré). 

11. Entre tx = 3T1x/4 et tx = T1x, la charginette BC (zx4) s’écarte progressivement de la position z4x = 

0 vers z4x = 7.823*10-13 à tx = 11T1x/12. Puis revenir rapidement à la position z4x = 0.  Ensuite 

recommencer à s’écarter progressivement de la position z4x = 0 vers z4x = 1.326*10-13 à tx = 

T1x. Il en est de même pour les charginettes DE, ΛΠ et ΘΨ. La charginette ΣΓ (zx6), s’écarte 

progressivement de la position z6x = 0 vers la position z6x = 6.662*10-8. 

12. A tx = T1x, les chrominettes se trouvent dans les mêmes états qu’à tx = 0. 

 

En résumé : 

En négligeant les petits déplacements des charginettes, les 3 chrominettes extérieures de la 

nucléonette sont collées à la chrominette du cœur par les 3 points de contact de cette 

dernière. 

 

4.8.5 Stabilité des quarks U+ 
Un quark up est composé de 1 chrominette haute et 1 positron. Sa stabilité est relativement faible. 

En effet, le centre Cchr de la chrominette peut héberger un positron pour 2 raisons suivantes : 

1. L’énergie potentielle du point Cchr est minimale par rapport son environ. Mais la différence 

est relativement faible. 

2. Le potentiel électrique du point Cchr est minimal négatif par rapport à son environ. Mais la 

différence est relativement faible à cause de la neutralisation électrique des charginettes 

constitutives. 

Au repos, le positron est stable au point Cchr. Mais si le quark up subi une accélération trop 

importante, le faible couplage du positron et la  chrominette va se séparer. Ceci explique l’instabilité 

observée du quark up dans les laboratoires. 

 

4.8.6 Stabilité des quarks D- 
Un quark down est composé de 1 chrominette basse et 1 électron. Sa stabilité est relativement 

faible. En effet, le centre Cchr de la chrominette peut héberger un électron pour 2 raisons suivantes : 

1. L’énergie potentielle du point Cchr est minimale par rapport son environ. Mais la différence 

est relativement faible. 

2. Le potentiel électrique du point Cchr est maximal positif par rapport à son environ. Mais la 

différence est relativement faible à cause de la neutralisation électrique des charginettes 

constitutives. 

Au repos, l’électron est stable au point Cchr. Mais si le quark down subi une accélération trop 

importante, le faible couplage de l’électron et la chrominette va se séparer. Ceci explique l’instabilité 

observée du quark down dans les laboratoires. 
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4.8.7 Stabilité des protons H+ 
Un proton est composé de 1 nucléonette basse, 2 positrons et 1 électron. Sa stabilité est très grande. 

En effet, le cœur possède 3 points de contact reliant les 3 chrominettes extérieures. Chaque point de 

contact possède une grande énergie potentielle. Ce qui constitue une barrière d’énergie potentielle 

qui ferme les ouvertures des 2 chrominettes reliées par ce point de contact. Donc, les 3 chrominettes 

extérieures enferment chacune leurs électrinettes. Ce qui rend le proton très stable. 

 

4.8.8 Stabilité des neutrons n0 
Un neutron est composé de 1 nucléonette haute, 2 positrons et 2 électrons. Sa stabilité est aussi très 

grande. 

Pour les mêmes raisons que pour le proton, les 3 chrominettes extérieures enferment leurs 

électrinettes. 

Pour le cœur, chacune de ses 2 ouvertures est fermée par 3 points de contact. Donc, l’électron du 

cœur est également enfermé. Ce qui rend le neutron très stable. 

 

4.8.9 Stabilité des nucléonettes 品 h 

La structure de la nucléonette haute est similaire à celle basse. Ici seule la différence sera décrite. 

Pour établir le comportement dynamique des 9 charginettes au sein de la nucléonette, on va 

procéder en 5 étapes suivantes : 

1. Utiliser les coordonnées des électrinettes et les distances entre elles déterminées 

précédemment. 

2. Déterminer la masse de chaque électrinette 

3. Utiliser les interactions électriques entre les électrinettes déterminées précédemment. 

4. Utiliser les équations dynamiques régissant chaque électrinette déterminées précédemment. 

5. Résoudre les équations différentielles à l’aide de l’outil progiciel Matlab-Simulink 

 

4.8.9.1 Déterminer la masse de chaque électrinette 

Les électrinettes seront numérotées comme suit : 

1. électrinette F : vitesse v3, la masse 中 F# globale. 

2. électrinette A : vitesse v3, la masse 中 F# globale. 

3. électrinette J : vitesse v3, la masse 中 F# globale. 

4. électrinette I : vitesse v3, la masse 中 F# globale. 

5. électrinette G : vitesse v1, la masse 中 H# globale. 

6. électrinette H : vitesse v1, la masse 中 H# globale. 

7. électrinette B : vitesse v1, la masse 中 B# globale. 

8. électrinette C : vitesse v1, la masse 中 B# globale. 

9. électrinette D : vitesse v1, la masse 中 B# globale. 

10. électrinette E : vitesse v1, la masse 中 B# globale. 

11. électrinette Θ : vitesse v1, la masse 中 B# globale. 

12. électrinette Ψ : vitesse v1, la masse 中 B# globale. 

13. électrinette Π : vitesse v1, la masse 中 B# globale. 
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14. électrinette Λ : vitesse v1, la masse 中 B# globale. 

15. électrinette Γ : vitesse v3, la masse 中 Γ# globale. 

16. électrinette Σ : vitesse v3, la masse 中 Γ# globale. 

17. électrinette Ω : vitesse v3, la masse 中 Γ# globale. 

18. électrinette Φ : vitesse v3, la masse 中 Γ# globale. 

La masse globale de l’électrinette F s’exprime par la formule suivante : 

中
𝐹#
=中

𝐹
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐹𝐼 + 𝐸𝑒𝐹𝐺 + 𝐸𝑒𝐹𝐶 + 𝐸𝑒𝐹𝐸) 

Où : 

• 中 F# : représente la masse inerte globale de l’électrinette F. 

• 中 F : est la charge neutre de l’électrinette F 

• EeFp : est l’énergie potentielle électrique entre l’électrinette F et l’électrinette p ayant un 

signe opposé à celui de l’électrinette F. En plus, la distance entre les électrinettes F et p varie 

entre 0 et d > 0. Avec p = I, G, C ou E. 

Pour calculer l’énergie potentielle EeFp, il faut connaitre la moyenne de la distance qui les sépare. En 

négligeant les déplacements des charginettes par rapport au triangle équilatéral, les distances 

s’écrient : 

• DFI = r*fFI = 0.36373 *10-15*1.757 = 0.63907361*10-15 m 

• DFG = r*fFG = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DFC = r*fFC = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DFE = r*fFE = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DHA = r*fHA = 0.36373 *10-15*1.65 = 0.6001545*10-15 m 

• DHI = r*fHI = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DHΓ = r*fHΓ = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DHΩ = r*fHΩ = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DBE = r*fBE = 0.36373*10-15*1.757 = 0.63907361*10-15 m 

• DBA = r*fBA = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

• DΣΩ = r*fΣΩ  = 0.36373*10-15*1.757 = 0.63907361*10-15 m 

• DΣG = r*fΣG  = 0.36373*10-15*1.65 = 0.6001545*10-15 m 

 

La masse globale de l’électrinette F devient : 

中
𝐹#
=中

𝐹
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐹0
中
𝐼0

𝐷𝐹𝐼
+
中
𝐹0
中
𝐺0

𝐷𝐹𝐺
+
中
𝐹0
中
𝐶0

𝐷𝐹𝐶
+
中
𝐹0
中
𝐸0

𝐷𝐹𝐸
) 

Avec la vitesse orbitale des charginettes très inférieure à c, 中 F =中 F0. Donc on a : 

中
𝐹#
=中

𝐹0
+ 
𝑘𝑒𝑒

2中
𝐹0

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐹0

𝐷𝐹𝐼
+
中
𝐻0

𝐷𝐹𝐺
+
中
𝐻0

𝐷𝐹𝐶
+
中
𝐻0

𝐷𝐹𝐸
) 

中
𝐹#
=中

𝐹0
+ 

𝑘𝑒𝑒
2中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) 
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Par symétrie, 中 A# =中 I# =中 J# =中 F#. 

La masse globale de l’électrinette H s’exprime par la formule suivante : 

中
𝐻#
=中

𝐻
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐻𝐴 + 𝐸𝑒𝐻𝐼 + 𝐸𝑒𝐻Γ + 𝐸𝑒𝐻Ω) 

Où : 

• 中 H# : représente la masse inerte globale de l’électrinette H. 

• 中 H : est la charge neutre de l’électrinette H 

• EeHp : est l’énergie potentielle électrique entre l’électrinette H et l’électrinette p. Avec p = 

A, I, Γ ou Ω. 

 

中
𝐻#
=中

𝐻
+ 

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐻0

中
𝐴0

𝐷𝐻𝐴
+
中
𝐻0

中
𝐼0

𝐷𝐻𝐼
+
中
𝐻0

中
Γ

𝐷𝐻Γ
+
中
𝐻0

中
Ω

𝐷𝐻Ω
) 

中
𝐻#
=中

𝐻0
+ 

𝑘𝑒𝑒
2中

𝐻0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐻𝐴
+
中
𝐹0

𝑓𝐻𝐼
+
中
𝐹0

𝑓𝐻Γ
+
中
𝐹0

𝑓𝐻Ω
) 

中
𝐻#
=中

𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0
⋅中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) 

Par symétrie, 中 G# =中 H#. 

La masse globale de l’électrinette B s’exprime par la formule suivante : 

中
𝐵#
=中

𝐵
+ 

1

2𝑐2
⋅ (𝐸𝑒𝐵𝐴 + 𝐸𝑒𝐵𝐸) 

Où : 

• 中 B# : représente la masse inerte globale de l’électrinette B. 

• 中 B : est la charge neutre de l’électrinette B 

• EeBp : est l’énergie potentielle électrique entre l’électrinette B et l’électrinette p ayant un 

signe opposé à celui de l’électrinette B. En plus, la distance entre les électrinettes B et p varie 

entre 0 et d > 0. Avec p = A ou E. 

 

中
𝐵#
=中

𝐵
+  

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
𝐵0
中
𝐹0

𝐷𝐵𝐴
+
中
𝐵0
中
𝐸0

𝐷𝐵𝐸
) 

中
𝐵#
=中

𝐻0
+  

𝑘𝑒𝑒
2中

𝐻0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) 

Par symétrie, 中 C# =中 D# =中 E# =中 Θ# =中 Ψ# =中 Π# =中 Λ# =中 B#. 

La masse globale de l’électrinette Σ s’exprime par la formule suivante : 
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中
Σ#
=中

Σ
+ 

1

2𝑐2
⋅ (𝐸𝑒ΣG + 𝐸𝑒ΣΩ) 

Où : 

• 中 Σ# : représente la masse inerte globale de l’électrinette Σ. 

• 中 Σ : est la charge neutre de l’électrinette Σ 

• EeΣp : est l’énergie potentielle électrique entre l’électrinette Σ et l’électrinette p ayant un 

signe opposé à celui de l’électrinette Σ. En plus, la distance entre les électrinettes Σ et p varie 

entre 0 et d > 0. Avec p = G ou Ω. 

 

中
Σ#
=中

Σ
+  

𝑘𝑒𝑒
2

2𝑐2中
𝑟𝑒𝑓

2 ⋅ (
中
Σ0
中
𝐺0

𝐷Σ𝐺
+
中
Σ0
中
Ω0

𝐷ΣΩ
) 

中
Σ#
=中

𝐹0
+  

𝑘𝑒𝑒
2中

𝐹0

2𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

Par symétrie, 中 Γ# =中 Ω# =中 Φ# =中 Σ#. 

La masse globale de la nucléonette est : 

中
𝑛𝑢𝑐𝑙

= ∑中
𝑝#

18

𝑝=1

 

中
𝑛𝑢𝑐𝑙

= 4 ⋅中
𝐹#
+ 2 ⋅中

𝐻#
+ 8 ⋅中

𝐵#
+ 4 ⋅中

Σ#
 

中
𝑛𝑢𝑐𝑙

= 4 ⋅中
𝐹0
+ 
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) + 2 ⋅中

𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0
⋅中

𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) + 8 ⋅中

𝐻0
+  
4𝑘𝑒𝑒

2中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) + 4 ⋅中

𝐹0

+  
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

中
𝑛𝑢𝑐𝑙

= 8 ⋅中
𝐹0
+ 
2𝑘𝑒𝑒

2中
𝐹0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
+
中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) + 10 ⋅中

𝐻0

+ 
𝑘𝑒𝑒

2中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
⋅ (

中
𝐹0

𝑓𝐻𝐴
+
中
𝐹0

𝑓𝐻𝐼
+
中
𝐹0

𝑓𝐻Γ
+
中
𝐹0

𝑓𝐻Ω
+
4 中

𝐹0

𝑓𝐵𝐴
+
4 中

𝐻0

𝑓𝐵𝐸
) 

La masse de la nucléonette est égale à la masse du proton – la masse de 2 positrons et de l’électron : 

中
𝑛𝑢𝑐𝑙

=中
𝑝+
−中

𝑒+
= 938.272 𝑀𝑒𝑉 − 3 ⋅ 511 𝐾𝑒𝑉 = 936.739 𝑀𝑒𝑉 

Or : 
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𝑟 =
𝑘𝑒中𝐻0

𝑒2

4中
𝑟𝑒𝑓

2 ⋅ (
𝑘𝑛

𝑣1
2) 

𝑟 =
𝑘𝑒中𝐹0

𝑒2

4中
𝑟𝑒𝑓

2 ⋅ [
𝑘𝑛

(3𝑣1)
2] =

𝑘𝑒中𝐹0
𝑒2

4中
𝑟𝑒𝑓

2
⋅ 9
⋅ [
𝑘𝑛
(𝑣1)

2] 

En combinant les deux : 

𝑟

中
𝐻0

=
9𝑟

中
𝐹0

 

中
𝐹0
= 9 ⋅中

𝐻0
 

L’égalité précédente devient : 

中
𝑛𝑢𝑐𝑙

= 8 ⋅ 9 中
𝐻0
+ 
2𝑘𝑒𝑒

29 中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
9 中

𝐻0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
+
中
𝐻0

𝑓ΣG
+
9 中

𝐻0

𝑓ΣΩ
) + 10

⋅中
𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ (
9 中

𝐻0

𝑓𝐻𝐴
+
9 中

𝐻0

𝑓𝐻𝐼
+
9 中

𝐻0

𝑓𝐻Γ
+
9 中

𝐻0

𝑓𝐻Ω
+
4 ∙ 9 中

𝐻0

𝑓𝐵𝐴
+
4 ⋅中

𝐻0

𝑓𝐵𝐸
) 

中
𝑛𝑢𝑐𝑙

= 82中
𝐻0
+ 
𝑘𝑒𝑒

2中
𝐻0

2

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

⋅ [(
162

𝑓𝐹𝐼
+
18

𝑓𝐹𝐺
+
18

𝑓𝐹𝐶
+
18

𝑓𝐹𝐸
+
18

𝑓ΣG
+
162

𝑓ΣΩ
) + (

9

𝑓𝐻𝐴
+
9

𝑓𝐻𝐼
+
9

𝑓𝐻Γ
+
9

𝑓𝐻Ω
+
36

𝑓𝐵𝐴
+
4

𝑓𝐵𝐸
)] 

On a une équation du second degré par rapport à 中 F0. 

𝑎 =
𝑘𝑒𝑒

2

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟
[
162

𝑓𝐹𝐼
+
18

𝑓𝐹𝐺
+
18

𝑓𝐹𝐶
+
18

𝑓𝐹𝐸
+
18

𝑓ΣG
+
162

𝑓ΣΩ
+
9

𝑓𝐻𝐴
+
9

𝑓𝐻𝐼
+
9

𝑓𝐻Γ
+
9

𝑓𝐻Ω
+
36

𝑓𝐵𝐴
+
4

𝑓𝐵𝐸
] 

𝑏 = 82 

𝑐𝑠 = −中𝑛𝑢𝑐𝑙
= −中

𝑛𝑢𝑐𝑙
⋅
𝑒

𝑐2
= −

936.739 ⋅ 1.602177 ⋅ 106 ⋅ 10−19

2.9975252 ⋅ 1016
= −1,67033456 ⋅ 10−27 ⋅ 𝑘𝑔 

[Σ𝑓] =
162

1.757
+
18

1.65
+
18

1.65
+
18

1.65
+
18

1.65
+
162

1.757
+

9

1.65
+

9

1.65
+

9

1.65
+

9

1.65
+
36

1.65
+

4

1.757
 

[Σ𝑓] =
162 + 162 + 4

1.757
+
18 ⋅ 4 + 9 ⋅ 4 + 36

1.65
 

[Σ𝑓] =
328

1.757
+
144

1.65
 

[Σ𝑓] = 273,954571325 
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𝑎𝑛
𝑎𝑑
=

𝑘𝑒𝑒
2

𝑐2中
𝑟𝑒𝑓

2
⋅ 𝑟

 

𝑎𝑛
𝑎𝑑
=

8.987552 ⋅ 1.6021772 ⋅ 109 ⋅ 10−38

2.9975252 ⋅ 9.1093822 ⋅ 0.36373 ⋅ 1016 ⋅ 10−62 ⋅ 10−15
= 8,5070664 ⋅ 1030 

 

𝑎 =
𝑎𝑛
𝑎𝑑
[Σ𝑓] = 8,5070664 ⋅ 10

30 ⋅ 273,954571325 = 2,330 549 728 846 ⋅ 1033 

中
𝐻0
=
−𝑏 ± √𝑏2 − 4𝑎𝑐

2 ⋅ 𝑎
=
−82 ± √822 + 4 ⋅ 2.330549728 ⋅ 1033 ⋅ 1,67033456 ⋅ 10−27

2 ⋅ 2.330549728846 ⋅ 1033
 

中
𝐻0
=
−82 ± 3946.88675079

4.661099458 ⋅ 1033
= 8,29179206669 ⋅ 10−31𝑘𝑔 

中
𝐹0
= 9 ⋅中

𝐻0
= 7,46261286 ⋅ 10−30𝑘𝑔 

 

𝑣1
2 =

𝑘𝑒中𝐻0
𝑒2

4中
𝑟𝑒𝑓

2 ⋅ (
𝑘𝑛
𝑟
) =

8.987552 ⋅ 8.29179206669 ⋅ 1.6021772 ⋅ 10910−3110−38

4 ⋅ 9.1093822 ⋅ 10−62
⋅
10−11+15

0.36373
 

𝑣1
2 = 1,584505904 ⋅ 106 

𝑣1 = 1,258771585 ⋅ 10
3𝑚/𝑠 

𝑣3 = 3,776314756 ⋅ 10
3𝑚/𝑠 

Déterminer la vitesse angulaire : 

𝜔1 =
𝑣1
𝑟
=
1,258771585 ⋅ 103

0.36373 ⋅ 10−15
= 3.460730721 ⋅ 10−5 ⋅ 1023 𝑟𝑎𝑑𝑖𝑎𝑛/𝑠 

𝜔1𝑥 = 3.460730721 ⋅ 10
−5 

𝑇1 =
2𝜋𝑟

𝑣1
= 1.815566079 ⋅ 105 ⋅ 10−23 𝑠 

 

中
𝐹#
=中

𝐹0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐹0

2
⋅ (

中
𝐹0

𝑓𝐹𝐼
+
中
𝐻0

𝑓𝐹𝐺
+
中
𝐻0

𝑓𝐹𝐶
+
中
𝐻0

𝑓𝐹𝐸
) 

中
𝐹#
⋅ 1031  = 74,6261286 + 0, 850707 ⋅

74,6261286

2

⋅ (
74,6261286

1.757
+
8,29179206669

1.65
+
8,29179206669

1.65
+
8,29179206669

1.65
) 

中
𝐹#
⋅ 1031  = 1901,393227111 

中
𝐹#
 = 1901,393227111 ⋅ 10−31𝑘𝑔 

2 中
𝐹#
 = 3802,786454222 ⋅ 10−31𝑘𝑔 
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中
𝐻#
=中

𝐻0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐻0
⋅中

𝐹0

2
⋅ (
1

𝑓𝐻𝐴
+
1

𝑓𝐻𝐼
+
1

𝑓𝐻Γ
+
1

𝑓𝐻Ω
) 

中
𝐻#
⋅ 1031  = 8,29179206669 + 0, 850707 ⋅

8,29179206669 ⋅ 74,6261286

2

⋅ (
1

1.65
+

1

1.65
+

1

1.65
+

1

1.65
) 

中
𝐻#
= 646,357453253 ⋅ 10−31𝑘𝑔  

中
𝐵#
=中

𝐻0
+ 
𝑎𝑛
𝑎𝑑
⋅
中
𝐻0

2
⋅ (

中
𝐹0

𝑓𝐵𝐴
+
中
𝐻0

𝑓𝐵𝐸
) 

中
𝐵#
⋅ 1031  = 8,291792067 + 0, 850707 ⋅

8,291792067

2
⋅ (
74,6261286

1.65
+
8,291792067

1.757
) 

中
𝐵#
= 184,452872212 ⋅ 10−31𝑘𝑔 

2中
𝐵#
= 368,905744424 ⋅ 10−31𝑘𝑔 

 

中
Σ#
=中

𝐹0
+  
𝑎𝑛
𝑎𝑑
⋅
中
𝐹0

2
⋅ (

中
𝐻0

𝑓ΣG
+
中
𝐹0

𝑓ΣΩ
) 

中
Σ#
⋅ 1031  = 74,6261286 + 0, 850707 ⋅

74,6261286

2
⋅ (
8,291792067

1.65
+
74,6261286

1.757
) 

中
Σ#
= 1582,360396518 ⋅ 10−31𝑘𝑔 

2 中
Σ#
= 3164.720793036 ⋅ 10−31𝑘𝑔 

Vérification : 

中
𝑛𝑢𝑐𝑙

= 4中
𝐹#
+ 2中

𝐻#
+ 8中

𝐵#
+ 4中

Σ#
 

中
𝑛𝑢𝑐𝑙

= 4 ⋅ 1901,393 + 2 ⋅ 646,357 + 8 ⋅ 184,453 + 4 ⋅ 1582,360 = 16703.35 ⋅ 10−31 𝑘𝑔 

Cette valeur correspond bien à la masse du proton – la masse de 3 électrinettes. 

En comparant la valeur de 中 F0 avec celle de 中 H0 de la nucléonette basse, on a à peu près l’égalité. 

C’est pareil pour la valeur de 中 H0 avec celle de 中 F0 de la nucléonnette basse. Ce qui permet de dire 

que le modèle des nucléonettes est bon. Du moins, on n’a pas trouvé d’incompatibilités. 

 

4.9 Modélisation des noyaux atomiques 
Au sein du noyau d’un atome, il peut exister plusieurs protons et plusieurs neutrons, peut-être même 

des nucléonettes en faible quantité. Entre ces nucléons, il existe une force de liaison. Il s’agit de 

modéliser ces liaisons. 

Les structures de nucléon conduisent à distinguer 5 types de liaison suivants : 
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1. Liaison entre les électrinettes « libres » du proton et celles « libres » du neutron. Ici, le mot 

« libre » signifie que l’électrinette n’appartient pas à une charginette. 

2. Liaison entre les électrinettes « libres » du premier couple proton-neutron (type 1) et celles 

« libres » du deuxième couple proton-neutron (type 1). Cette liaison peut se généraliser 

entre 2 groupes de nucléons. Chaque groupe de nucléons est composé de nucléons reliés par 

les liaisons de type 1. 

3. Liaison entre les électrinettes « liées » du proton et celles « liées » du neutron. 

4. Liaison entre les électrinettes « liées » d’un premier proton et celles « liées » d’un deuxième 

proton. 

5. Liaison entre les électrinettes « liées » d’un premier neutron et celles « liées » d’un deuxième 

neutron. 

Remarque : 

Théoriquement, il existe deux demi neutron, un antiproton et un antineutron :  

• ½ Neutron basse : une nucléonette basse + 1 électron + 1 positron 

• ½ Neutron haute : une nucléonette haute + 1 électron + 1 positron 

• antineutron : une nucléonette basse + 2 électrons + 2 positrons 

• antiproton : une nucléonette haute + 2 électrons + 1 positron 

En plus, il y a les nucléonettes. 

Ces particules ne sont pas étudiées ici. 

 

4.9.1 Modélisation des liaisons entre électrinettes libres : L0 
Cette liaison peut exister entre un proton et un neutron. Le schéma suivant montre une vue d’un 

proton et d’un neutron empilés. 

         

Figure 38 - Liaison entre électrinettes libres 

Pour simplifier les illustrations, le symbole suivant sera utilisé pour une liaison axiale L0 entre un 

proton et un neutron : 

 

Pour calculer l’énergie de liaison, il faut d’abord déterminer les coordonnées des électrinettes libres 

au sein des nucléons. 
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Figure 39 - Vue de dessus neutron-proton décalés 

 

Figure 40 - Vue de droite neutron-proton 

Les coordonnées des points D, D’, J, J’, A, A’, G et G’ dans le repère global sont : 

𝑂𝐷⃗⃗⃗⃗⃗⃗ = 2 ∙ 𝑂𝑂2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷(𝑥, 𝑦, 𝑧) = 2𝑂2 (−
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐷 (−√3

𝑟

√3
, 0, −

𝑟

√3
) = 𝐷(−𝑟, 0, −

𝑟

√3
) 

𝐷′(𝑥, 𝑦, 𝑧) = 𝐷′(−𝑟,−2𝑟,−
𝑟

√3
) 

𝐴(𝑥, 𝑦, 𝑧) = 2𝑂3 (
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐴 (√3

𝑟

√3
, 0,−

𝑟

√3
) = 𝐴(𝑟, 0,−

𝑟

√3
) 

𝐴′(𝑥, 𝑦, 𝑧) = 𝐴′(𝑟, −2𝑟,−
𝑟

√3
) 
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𝐽(𝑥, 𝑦, 𝑧) = 2𝑂1(0,0, 𝑧0) = 𝐽 (0,0,2
𝑟

√3
) = 𝐽(0,0,

2𝑟

√3
) 

𝐽′(𝑥, 𝑦, 𝑧) = 𝐽′(0,−2𝑟,
2𝑟

√3
) 

𝐺(𝑥, 𝑦, 𝑧) = 𝐺(0,0,0) 

𝐺′(𝑥, 𝑦, 𝑧) = 𝐺′(0,−2𝑟, 0) 

Déterminer les énergies potentielles entre les couples de charges électriques : 

𝐸 = 𝐸𝐴
𝐴′ + 𝐸𝐷

𝐷′ + 𝐸𝐽
𝐽′
+ 𝐸𝐷

𝐽′
+ 𝐸𝐽

𝐷′ + 𝐸𝐺
𝐴′ − 𝐸𝐴

𝐷′ − 𝐸𝐴
𝐽′
− 𝐸𝐷

𝐴′ − 𝐸𝐽
𝐴′ − 𝐸𝐺

𝐷′ − 𝐸𝐺
𝐽′

 

𝐸𝑥
𝑦′
= 𝑘𝑒

中
𝑥
∙中

𝑦′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑥
𝑦′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝑥 ∙中𝛿𝑥

) (中
𝑟𝑒𝑓
+ α𝑦′ ∙中𝛿𝑦′

) 𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑥
𝑦′

 

Définition des termes : 

• 中 ref : la charge neutre d’une électrinette au repos. 

• αx : le coefficient de participation de la charge neutre du voisinage de l’électrinette x. 

• 中 δx : la charge neutre du voisinage de l’électrinette x. 

• αy’ : le coefficient de participation de la charge neutre du voisinage de l’électrinette y’. 

• 中 δy’ : la charge neutre du voisinage de l’électrinette y’. 

 

𝐸𝐴
𝐴′ = 𝑘𝑒

中
𝐴
∙中

𝐴′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝐴
𝐴′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

) (中
𝑟𝑒𝑓
+ α𝐴′ ∙中𝛿𝐴′

) 𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝐴

𝐴′
 

中
𝛿𝑥
=中

𝛿𝐴
= 6(中

𝐹
+中

𝐹
+中

𝐻
) + 6(中

𝐻
+中

𝐻
+中

𝐹
) 

中
𝛿𝑦′
=中

𝛿𝐴′
=中

𝛿𝐴
 

Pour simplifier les calculs, on néglige la différence entre la charge neutre des quarks de neutron et 

celle de proton.  

中
𝐹
=
8.261782 ∙ 10−31 + 8.291792 ∙ 10−31

2
= 8.276787 ∙ 10−31 𝑘𝑔 

中
𝐻
= 9 ∙中

𝐹
= 7.449108 ∙ 10−30 𝑘𝑔 

 

Dans un premier temps, on suppose que : 

α𝐴 = α𝐴′ = α𝑥′ = α𝑦′ 

On a donc : 

中
𝛿𝐴
= 18 中

𝐹
+ 18 中

𝐻
= 1489.821 606 ∙ 10−31 𝑘𝑔 

中
𝛿𝐴′
=中

𝛿𝐴
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Pour les autres termes d’énergie potentielle : 

中
𝛿𝐷
=中

𝛿𝐽
=中

𝛿𝐺
=中

𝛿𝐴
=中

𝛿𝐷′
=中

𝛿𝐽′
=中

𝛿𝐴′
 

 

𝐸 ∙中
𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

=
1

𝑑𝐴
𝐴′
+
1

𝑑𝐷
𝐷′
+
1

𝑑𝐽
𝐽′
+
1

𝑑𝐷
𝐽′
+
1

𝑑𝐽
𝐷′
+
1

𝑑𝐺
𝐴′
−
1

𝑑𝐴
𝐷′
−
1

𝑑𝐴
𝐽′
−
1

𝑑𝐷
𝐴′
−
1

𝑑𝐽
𝐴′
−
1

𝑑𝐺
𝐷′
−
1

𝑑𝐺
𝐽′

 

𝑑𝐴
𝐴′ = 2𝑟 = 𝑑𝐷

𝐷′ = 𝑑𝐽
𝐽′

 

𝑑𝐷
𝐽′
= √𝑟2 + (2𝑟)2 + (

3𝑟

√3
)
2

= 𝑟 ∙ √1 + 4 + 3 = 2√2 ∙ 𝑟 

𝑑𝐽
𝐷′ = 2√2 ∙ 𝑟 

𝑑𝐺
𝐴′ = √𝑟2 + (2𝑟)2 + (

𝑟

√3
)
2

= 𝑟 ∙ √1 + 4 +
1

3
=
4

√3
∙ 𝑟 

𝑑𝐴
𝐷′ = √(2𝑟)2 + (2𝑟)2 + 0 = 2√2 ∙ 𝑟 

𝑑𝐴
𝐽′
= √𝑟2 + (2𝑟)2 + (

3𝑟

√3
)
2

= 𝑟 ∙ √1 + 4 + 3 = 2√2 ∙ 𝑟 

𝑑𝐷
𝐴′ = √(2𝑟)2 + (2𝑟)2 + 0 = 2√2 ∙ 𝑟 

𝑑𝐽
𝐴′ = √𝑟2 + (2𝑟)2 + (

3𝑟

√3
)
2

= 𝑟 ∙ √1 + 4 + 3 = 2√2 ∙ 𝑟 

𝑑𝐺
𝐷′ = √𝑟2 + (2𝑟)2 + (

𝑟

√3
)
2

= 𝑟 ∙ √1 + 4 +
1

3
=
4

√3
∙ 𝑟 

𝑑𝐺
𝐽′ = √0 + (2𝑟)2 + (

2𝑟

√3
)
2

= 2𝑟 ∙ √1 +
1

3
=
4

√3
∙ 𝑟 

𝐸 ∙中
𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

=
1

2𝑟
+
1

2𝑟
+
1

2𝑟
+

1

2√2 ∙ 𝑟
+

1

2√2 ∙ 𝑟
+

1

4

√3
∙ 𝑟
−

1

2√2 ∙ 𝑟
−

1

2√2 ∙ 𝑟
−

1

2√2 ∙ 𝑟

−
1

2√2 ∙ 𝑟
−

1

4

√3
∙ 𝑟
−

1

4

√3
∙ 𝑟

 



Modèle XijieDong V3.0 

 

P a g e  115 | 219 

 

 

𝐸 ∙中
𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2 =

3

2𝑟
−

1

√2 ∙ 𝑟
−

1

4

√3
∙ 𝑟
=
1

4𝑟
∙ [6 − 2√2 − √3] 

𝐸 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

中
𝑟𝑒𝑓

2  

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

= (中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

 

√
𝐸 ∙中

𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

=中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

 

α𝐴 ∙中𝛿𝐴
= √

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

−中
𝑟𝑒𝑓

 

 

α𝐴 ∙中𝛿𝐴
= √

3.564 360 233 ∙ 10−13 ∙ 82.81 ∙ 10−62 ∙ 4 ∙ 0.36373 ∙ 10−15

8.987552 ∙ 1.6021772 ∙ 10−29 ∙ [6 − 2√2 − √3]
− 9.1 ∙ 10−31 

α𝐴 ∙中𝛿𝐴
= √

3.564 360 233 ∙ 82.81 ∙ 4 ∙ 0.36373 ∙ 10−61

8.987552 ∙ 1.6021772 ∙ [6 − 2√2 − √3]
− 9.1 ∙ 10−31 

α𝐴 ∙中𝛿𝐴
= √12.93072 ∙ 10−61 − 9.1 ∙ 10−31 

α𝐴 ∙中𝛿𝐴
= 11.371332376 ∙ 10−31 − 9.1 ∙ 10−31 

α𝐴 ∙中𝛿𝐴
= 2.271 332 376 ∙ 10−31 

α𝐴 ∙ 1489.821 606 ∙ 10
−31 = 2.271 332 376 ∙ 10−31 

α𝐴 = 0.001 524 567 

 

Vérification : 

𝐸 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

中
𝑟𝑒𝑓

2  
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(中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

中
𝑟𝑒𝑓

2 =
(9.1 ∙ 10−31 + 0.001524567 ∙ 1489.821 606 ∙ 10−31)2

(9.1 ∙ 10−31)2

=
(11.371332376 ∙ 10−31)2

82.81 ∙ 10−62
= 1.561 492 573 

𝐸 =
8.987552 ∙ 1.6021772

4 ∙ 0.36373
∙ 109−38+15[6 − 2√2 − √3] ∙ 1.561492573 

𝐸 = 22.826620318 ∙ 10−14  ∙ 1.561492573 ∙ 𝐽 = 3.564 3598 103 ∙ 10−13 𝐽 

𝐸𝐿0 = −2. 224694 MeV = −3.564 3598 103 ∙ 10−13 𝐽  

 

Ces électrinettes étant libres, la longueur de chaque couple d’électron-positron est égale à 2r. 

(Rappel : r est le rayon des charginettes) 

La neutralité globale du neutron impose une proximité rapprochée et un alignement parfait des 

électrinettes dans les axes de symétrie. 

Une fois la liaison établie, elle est entre 3 couples de charges statiques, donc relativement stables. 

Cet aspect statique implique qu’il n’y a pas d’énergie de liaison à libérer lorsque la liaison est 

rompue. Il faut même fournir de l’énergie.  

La position des électrinettes se trouve au centre de chaque chrominette est une condition supposée. 

La réalité est différente. En effet, le couplage de deux électrinettes de signes opposés aurait la 

tendance de les rapprocher. Tandis que le couplage de deux électrinettes de signes identiques aurait 

la tendance de les éloigner. Ce qui modifie la position initiale des électrinettes. Mais la position 

exacte est un peu difficile à déterminer.  

Donc, la valeur obtenue précédemment obtenue est une valeur approximative. 

 

4.9.2 Modélisation des liaisons entre électrinettes libres : LL0 
Cette liaison peut exister entre deux couples de proton-neutron. Le schéma suivant montre une vue. 

 

Figure 41 - Liaison radiale de 2 couples Proton-Neutron 
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Il existe un autre cas de figure particulier : 

 

Pour simplifier les illustrations, le symbole suivant sera utilisé pour une liaison radiale LL0 entre deux 

couples de proton et neutron : 

 

 

Figure 42 - Coordonnées d'un proton et d'un neutron côte à côte 

Déterminer les coordonnées de O6 et O8 :  
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𝑀6 =

(

 
 
 
 
 

1

2

−3

4

√3

4

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0 −
1

2

−√3

2
−
𝑟

2

√3

2

√3

4
−
1

4
−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

0 0 0 1 )

 
 
 
 
 

 

𝑂6 = 𝑀6⨂𝑂6𝑅6 =

(

 
 
 
 
 

1

2

−3

4

√3

4

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0 −
1

2

−√3

2
−
𝑟

2

√3

2

√3

4
−
1

4
−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

0 0 0 1 )

 
 
 
 
 

(

0
0
0
1

) =

(

 
 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

−
𝑟

2

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 
 

 

 

Pour déterminer les coordonnées de O8, on utilise la symétrie entre O6 et O8 par rapport au plan 

OYZ : 

𝑂8 =

(

 
 
 
 
−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

−
𝑟

2

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 
 

 

En annulant la composante y, on obtient les coordonnées de g6 et g8 : 

𝑔6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 

 

𝑔8 =

(

 
 
 
−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

0

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 

 

En ajoutant 2r à la composante y, on obtient les coordonnées de g’’’6 et g’’’4 : 

𝑔′′′6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

2𝑟

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )
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𝑔′′′4 =

(

 
 
 
−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

2𝑟

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 

 

 

Déterminer les coordonnées de O’6 et O’4 : 

𝑂′6𝑅′ =

(

 
 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

−
𝑟

2

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 
 

 

Déterminer l’angle où le côte Z est minimal pour le point Γ : 

Γ(

𝑥𝛾
𝑦𝛾
𝑧𝛾
1

) = Γ

(

 
 
 
 
 

𝑟

2
⋅ cos(𝜔𝑡) −

3

4
𝑟 ⋅ sin(𝜔𝑡) + 𝑧6

√3

4
+ Δ6

√3

2
+
3𝑟

4
+ 𝑧0

√3

2

−
𝑟

2
⋅ sin(𝜔𝑡) − 𝑧6

√3

2
−
𝑟

2

𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

1 )

 
 
 
 
 

 

𝑧𝛤 =  𝑟
√3

2
⋅ cos(𝜔𝑡) + 𝑟

√3

4
⋅ sin(𝜔𝑡) −

𝑧6
4
−
𝑟√3

4
−
Δ6
2
−
𝑧0
2

 

𝑧𝛤
′ =  𝑟

√3

2
⋅ sin(𝜔𝑡) ∙ 𝜔 + 𝑟

√3

4
⋅ cos(𝜔𝑡)𝜔 = 0 

√3

2
⋅ sin(𝜔𝑡) +

√3

4
⋅ cos(𝜔𝑡) = 0 

2 ⋅ sin(𝜔𝑡) + cos(𝜔𝑡) = 0 

tan(𝜔𝑡) = −
1

2
 

𝜔𝑡 = −26.565 051 177° 𝑜𝑢 𝜔𝑡 = −206.565 051 177°  

Soit : 

• αzmin = -206.565 051 177° 

• zΓmin = -0.614 679 576 

Le repère R’ est obtenu avec un déplacement vers O’, puis une rotation de -60° autour de l’axe OY. 

Les coordonnées de O’ : 

𝑂′ (

𝑥𝑂′
𝑦𝑂′
𝑧𝑂′
1

) = 𝑂′(

0
0

2𝑧𝛤𝑚𝑖𝑛
1

) = 𝑂′(

0
0

−1.229 359 152
1

) 
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La matrice de transformation est : 

𝑀𝑂𝑂′ =

(

  
 

cos (
−𝜋

3
) 0 sin (

−𝜋

3
) 0

0 1 0 0

−sin (
−𝜋

3
) 0 cos (

−𝜋

3
) 2𝑧𝛤𝑚𝑖𝑛

0 0 0 1 )

  
 

 

𝑀𝑂𝑂′ =

(

 
 
 

1

2
0 −

√3

2
0

0 1 0 0

√3

2
0

1

2
−1.229 359 152

0 0 0 1 )

 
 
 

 

Déterminer les coordonnées de O’6 et O’4 :  

𝑂′6𝑅′ =

(

 
 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

−
𝑟

2

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 
 

 

𝑂′6 = 𝑀𝑂𝑂′⨂𝑂′6𝑅′ =

(

 
 
 

1

2
0 −

√3

2
0

0 1 0 0

√3

2
0

1

2
2𝑧𝛤𝑚𝑖𝑛

0 0 0 1 )

 
 
 

(

 
 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

−
𝑟

2

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 
 

=

(

 
 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

−
𝑟

2
1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 
 

 

Pour déterminer les coordonnées de O’4, on utilise la symétrie entre O’6 et O’4 par rapport au plan 

OYZ : 

𝑂′4 =

(

 
 
 
 

−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

−
𝑟

2
1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 
 

 

En annulant la composante y, on obtient les coordonnées de g’6 et g’4 :  
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𝑔′6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

𝑔′4 =

(

 
 
 

−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

0

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

En ajoutant 2r à la composante y, on obtient les coordonnées de g’’6 et g’’8 : 

𝑔′′6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

2𝑟
1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

𝑔′′8 =

(

 
 
 

−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

2𝑟

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

L’énergie totale des liaisons est : 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑃𝑁1 + 𝐸𝑃𝑁2 + 𝐸2𝑃𝑁 

𝐸𝑃𝑁1 = 𝐸𝑃𝑁2 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐴 ∙中𝛿𝐴

)
2

中
𝑟𝑒𝑓

2  

 

Déterminer les énergies potentielles entre les couples de charges électriques : 

𝐸2𝑃𝑁 = 𝐸𝑔6
𝑔6′
+ 𝐸𝑔8

𝑔4′
+ 𝐸𝑔6′′

𝑔6′′′
+ 𝐸𝑔8′′

𝑔4′′′
+ 𝐸𝑔6

𝑔8′′
+ 𝐸𝑔8

𝑔6′′
+ 𝐸𝑔6′

𝑔4′′′
+ 𝐸𝑔4′

𝑔6′′′
− 𝐸𝑔6

𝑔4′
− 𝐸𝑔8

𝑔6′
− 𝐸𝑔6′′

𝑔4′′′

− 𝐸𝑔8′′
𝑔6′′′

− 𝐸𝑔6
𝑔6′′

− 𝐸𝑔8
𝑔8′′

− 𝐸𝑔6′
𝑔6′′′

− 𝐸𝑔4′
𝑔4′′′

 

𝐸𝑥
𝑦′
= 𝑘𝑒

中
𝑥
∙中

𝑦′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑥
𝑦′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝑥 ∙中𝛿𝑥

) (中
𝑟𝑒𝑓
+ α𝑦′ ∙中𝛿𝑦′

) 𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑥
𝑦′

 

Définition des termes : 

• 中 ref : la charge neutre d’une électrinette au repos. 

• αx : le coefficient de participation de la charge neutre du voisinage de l’électrinette x. 

• 中 δx : la charge neutre du voisinage de l’électrinette x. 
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• αy’ : le coefficient de participation de la charge neutre du voisinage de l’électrinette y’. 

• 中 δy’ : la charge neutre du voisinage de l’électrinette y’. 

 

𝐸𝑔
𝑔′
= 𝑘𝑒

中
𝑔
∙中

𝑔′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑔
𝑔′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

) (中
𝑟𝑒𝑓
+ α𝑔′ ∙中𝛿𝑔′

) 𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑔

𝑔′
 

中
𝛿𝑥
=中

𝛿𝑔
= 12(中

𝐹
+中

𝐹
+中

𝐻
) + 12(中

𝐻
+中

𝐻
+中

𝐹
) 

中
𝛿𝑦′
=中

𝛿𝑔′
=中

𝛿𝑔
 

中
𝛿𝑔
= 2979.643212 ∙ 10−31 𝑘𝑔 

𝐸 ∙中
𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2

=
1

𝑑𝑔6
𝑔6′
+

1

𝑑𝑔8
𝑔4′
+

1

𝑑
𝑔6′′
𝑔6′′′

+
1

𝑑
𝑔8′′
𝑔4′′′

+
1

𝑑𝑔6
𝑔8′′

+
1

𝑑𝑔8
𝑔6′′

+
1

𝑑
𝑔6′
𝑔4′′′

+
1

𝑑
𝑔4′
𝑔6′′′

−
1

𝑑𝑔6
𝑔4′
−

1

𝑑𝑔8
𝑔6′

−
1

𝑑
𝑔6′′
𝑔4′′′

−
1

𝑑
𝑔8′′
𝑔6′′′

−
1

𝑑𝑔6
𝑔6′′

−
1

𝑑𝑔8
𝑔8′′

−
1

𝑑
𝑔6′
𝑔6′′′

−
1

𝑑
𝑔4′
𝑔4′′′

 

𝑔6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0

−
1

2
∆6 −

√3

4
𝑟 −

1

2
𝑧0

1 )

 
 
 

 

𝑔′′6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

2𝑟

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

𝑔′4 =

(

 
 
 

−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

0

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

𝑔′6 =

(

 
 
 

√3

2
∆6 +

3

4
𝑟 +

√3

2
𝑧0

0

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )
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𝑔′′8 =

(

 
 
 

−
√3

2
∆6 −

3

4
𝑟 −

√3

2
𝑧0

2𝑟

1

2
∆6 +

√3

4
𝑟 +

1

2
𝑧0 + 2𝑧𝛤𝑚𝑖𝑛

1 )

 
 
 

 

 

𝑑𝑔6
𝑔6′
= √(∆6 +

√3

2
𝑟 + 𝑧0 + 2 ∙ 𝑧Γ𝑚𝑖𝑛)

2

= −∆6 −
√3

2
𝑟 − 𝑧0 − 2 ∙ 𝑧Γ𝑚𝑖𝑛 

𝑑𝑔8
𝑔4′
= 𝑑

𝑔6′′
𝑔6′′′

= 𝑑
𝑔8′′
𝑔4′′′

= 𝑑𝑔6
𝑔6′
= 0.704 360 118 

𝑑𝑔6
𝑔8′′

= √(√3Δ6 +
3

2
𝑟 + √3𝑧0)

2

+ (2𝑟)2 + (∆6 +
√3

2
𝑟 + 𝑧0 + 2 ∙ 𝑧Γ𝑚𝑖𝑛)

2

 

𝑑𝑔8
𝑔6′′

= 𝑑
𝑔6′
𝑔4′′′

= 𝑑
𝑔4′
𝑔6′′′

= 𝑑𝑔6
𝑔8′′

= 1.360 953 042 

𝑑𝑔6
𝑔4′
= √(√3Δ6 +

3

2
𝑟 + √3𝑧0)

2

+ (∆6 +
√3

2
𝑟 + 𝑧0 + 2 ∙ 𝑧Γ𝑚𝑖𝑛)

2

 

𝑑𝑔8
𝑔6′
= 𝑑

𝑔6′′
𝑔4′′′

= 𝑑
𝑔8′′
𝑔6′′′

= 𝑑𝑔6
𝑔4′
= 1.150 215 254 

𝑑𝑔6
𝑔6′′

= √(2𝑟)2 + (∆6 +
√3

2
𝑟 + 𝑧0 + 2 ∙ 𝑧Γ𝑚𝑖𝑛)

2

 

𝑑𝑔8
𝑔8′′

= 𝑑
𝑔6′
𝑔6′′′

= 𝑑
𝑔4′
𝑔4′′′

= 𝑑𝑔6
𝑔6′′

= 1.012 581 467 

Application numérique : 

• r = 0.36373 * 10-15 m 

• Δ6 = 0 

• z0 = r / √3 

• zΓmin = -0.614 679 576 * 10-15 m 

 

 

𝐸2𝑃𝑁 ∙中𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2 =

4

𝑑𝑔6
𝑔6′
+

4

𝑑𝑔6
𝑔8′′

−
4

𝑑𝑔6
𝑔4′
−

4

𝑑𝑔6
𝑔6′′

 

𝐸𝑡𝑜𝑡𝑎𝑙 =
𝑘𝑒 ∙ 𝑒

2

2𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2

中
𝑟𝑒𝑓

2 + 𝑘𝑒 ⋅
(中

𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2
𝑒2

中
𝑟𝑒𝑓

2

∙ [
4

𝑑𝑔6
𝑔6′
+

4

𝑑𝑔6
𝑔8′′

−
4

𝑑𝑔6
𝑔4′
−

4

𝑑𝑔6
𝑔6′′
] 
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𝐸𝑡𝑜𝑡𝑎𝑙 ∙中𝑟𝑒𝑓

2

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2 =

[6 − 2√2 − √3]

2𝑟
+

4

𝑑𝑔6
𝑔6′
+

4

𝑑𝑔6
𝑔8′′

−
4

𝑑𝑔6
𝑔4′
−

4

𝑑𝑔6
𝑔6′′

 

 

𝐸𝑡𝑜𝑡𝑎𝑙 ∙中𝑟𝑒𝑓

2
∙ 10−15

𝑘𝑒 ∙ 𝑒
2 ∙ (中

𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2

= 1.978 833 293 +
4

0.704 360 118
+

4

1.360 953 042
−

4

1.150 215 254

−
4

1.012 581 467
= 1.978 833 293 + 1.190 120 7 = 3.168 953 993 

Ici,  

Etotal = Ehe000  =  -28.297 499 001 MeV = -45.337 686 948*10-13 J. 

On en déduit la valeur de αg : 

𝐸𝑡𝑜𝑡𝑎𝑙 ∙中𝑟𝑒𝑓

2
∙ 10−15

𝑘𝑒 ∙ 𝑒
2 ∙ [3.168 953 993]

= (中
𝑟𝑒𝑓
+ α𝑔 ∙中𝛿𝑔

)
2

 

α𝑔 ∙中𝛿𝑔
= √

𝐸𝑡𝑜𝑡𝑎𝑙 ∙中𝑟𝑒𝑓

2
∙ 10−15

𝑘𝑒 ∙ 𝑒
2 ∙ [3.168 953 993]

− (中
𝑟𝑒𝑓
) 

On a : 

中
𝛿𝑔
= 12(中

𝐹
+中

𝐹
+中

𝐻
) + 12(中

𝐻
+中

𝐻
+中

𝐹
) = 2979.643212 ∙ 10−31 𝑘𝑔 

中
𝑟𝑒𝑓

= 9.1 ∙ 10−31 

 

α𝑔中𝛿𝑔
= √

45.337686948 ∙ 10−13 ∙ 82.81 ∙ 10−62 ∙ 10−15

8.987552 ∙ 1.6021772 ∙ 10−29 ∙ [3.168 953 993]
− 9.1 ∙ 10−31 

α𝑔中𝛿𝑔
= √

3.380 596 505 ∙ 10−61

1.0
− 9.1 ∙ 10−31 

α𝑔中𝛿𝑔
= 22.661 147 831 ∙ 10−31 − 9.1 ∙ 10−31 

α𝑔 ∙ 2979.643212 ∙ 10
−31 = 13.561 147 831 ∙ 10−31 

α𝑔 = 0.004 551 266 
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4.9.3 Modélisation des liaisons entre électrinettes liées 
Ce type de liaison peut exister entre 2 nucléons. Les nucléons sont les protons et les neutrons ou 

nucléonettes. Le schéma suivant montre une vue de dessus d’un proton et d’un neutron. 

 

 

Figure 43 - Liaison entre électrinettes liées 

Les points de contact sont définis comme suit : 

1. Les charginettes externes du nucléon O1 entrant en contact avec le nucléon O2 sont au 

nombre de 4 paires. 

2. Par rapport au schéma, les deux points de contact des 2 charginettes de dessus sont : S1 et 

P1. 

3. Par rapport au schéma, les deux points de contact des 2 charginettes de dessous sont : S2 et 

P2. 

4. Les charginettes externes du nucléon O2 entrant en contact avec le nucléon O1 sont 

nécessairement au nombre de 4. 

5. Par rapport au schéma, les deux points de contact des 2 charginettes de dessus sont : W1 et 

M1. W1 est très proche de S1. M1 est très proche de P1. 

6. Par rapport au schéma, les deux points de contact des 2 charginettes de dessous sont : W2 et 

M2. W2 est très proche de S2. M2 est très proche de P2. 

7. L’électrinette qS1 et l’électrinette qW1 se rencontre au point de contact S1 et W1. 

8. L’électrinette qP1 et l’électrinette qM1 se rencontre au point de contact P1 et M1. 

9. L’électrinette qS2 et l’électrinette qW2 se rencontre au point de contact S2 et W2. 

10. L’électrinette qP2 et l’électrinette qM2 se rencontre au point de contact P2 et M2. 
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Pour que les points de contact entre les deux nucléons soient sur les 6 plans formant les 2 grands 

triangles, il faudrait que les rotations des charginettes soient toutes synchronisées. 

Donc, pour qu’une fusion puisse avoir lieu, il faut que les nucléons soient synchronisés. C’est la 

même condition que pour la chrominette et la nucléonette. 

En dehors de la synchronisation, il n’y a plus de contrainte sur le sens de rotation ni sur le niveau 

d’énergie. En effet, les 2 électrinettes se rapprochant du point de contact sont de signes opposés. 

Donc, elles peuvent (mais sans obligatoirement) être de même niveau d’énergie et dans le même 

sens de déplacement. 

Les points de contact ne se trouvent pas aux milieux des points de contact existant. Ils se trouvent un 

peu à l’écart. Mais cela n’empêche pas la liaison de se réaliser. 

Les points de contact se réalisent par groupe de 4. Ce qui rend la liaison stable. 

Il y a 4 cas de figure pour chaque nucléon ou nucléonette. Prenons le premier nucléon O1 : 

1. Les électrinettes qP1, qP2, qS1 et qS2 sont de même niveau d’énergie E1.  

2. Les électrinettes qP1, qP2, qS1 et qS2 sont de même niveau d’énergie E2. E2 > E1. 

3. Les électrinettes qP1, qP2, qS1 et qS2 sont de différent niveau d’énergie EP1 = EP2 = E1 et ES1 = ES2 

= E2.  

4. Les électrinettes qP1, qP2, qS1 et qS2 sont de différent niveau d’énergie EP1 = EP2 = E2 et ES1 = ES2 

= E1. 

En combinant avec les 4 cas de la deuxième nucléonette O2, il y a au total 16 combinaisons possibles. 

Mais par effet de symétrie, il n’y a que 6 niveaux d’énergie de liaison. 

Ce qui oblige les électrinettes Q et W ont aussi un même niveau d’énergie E2. E2 != E1. Ce qui oblige 

les électrinettes Q et W ont aussi un niveau différent d’énergie E2 et E1. Le premier cas correspond à 

une liaison proton-neutron. Le deuxième cas correspond à une liaison proton-proton ou neutron-

neutron ou proton-neutron. 

4.9.3.1 Cas 1 : Les électrinettes qs et qp sont de même niveau d’énergie E1 

En combinant avec les 4 cas du nucléon O2, on obtient les 4 combinaisons suivantes : 

1. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E1. 

𝐿11 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸1
𝐸1 𝐸1
𝐸1 𝐸1
𝐸1 𝐸1

) 

 
Faut-il diviser par un coefficient k, l’énergie de liaison ?  En effet, quand une charge 

électrique n’a pas qu’un seul couple, comment déterminer l’énergie potentielle ? Cette 
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même question se pose au sein d’une nucléonette. On fait l’hypothèse qu’elles sont 

indépendantes en raison du fait que les points de contact sont indépendants (assez éloignés). 

Comme une charginette a deux électrinettes, l’énergie de liaison s’écrit : 

𝐸𝐿11 = 2 ∙ 4 ∙ 𝑘𝑒
中
10
中
10

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
 

Il faut déterminer la distance moyenne d qui sépare les 2 électrinettes. Comme les deux 

charginettes en face à face sont dans un même plan, d est égale à leur diamètre. 

d = 2*r = 2*0.36373*10-15 m = 0.72746*10-15 m 

𝐸𝐿11 = 2 ∙ 4𝑘𝑒
中
10
中
10

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
= 2 ∙ 105.532549241 ∗ 10−14 𝐽 = 13.173648 ∗  106 𝑒𝑉 

 

Application numérique : 

中 10 = 8.3 * 10-31 kg 

中 ref = 9.1 * 10-31 kg 

e = 1,602 176 565*10-19 C 

ke = 8,987 551 787 368 176 * 109 kg-1 m-1 A-2 

 

2. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E2. E2 > E1. 

𝐿12 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸2
𝐸1 𝐸2
𝐸1 𝐸2
𝐸1 𝐸2

) 

 
L’énergie de liaison s’écrit : 

𝐸𝐿12 = 2 ∙ 4𝑘𝑒
中
10
中
20

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
=  2 ∙ 940.892619526 ∗ 10−14 𝐽 = 117.4518 ∗  106 𝑒𝑉 

 

3. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E1 et EM1 = 

EM2 = E2. 
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𝐿13 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸1
𝐸1 𝐸1
𝐸1 𝐸2
𝐸1 𝐸2

) 

 
 

L’énergie de liaison s’écrit : 

𝐸𝐿13 = 2 ∙ 2𝑘𝑒
中
10
中
10

中
𝑟𝑒𝑓

2 ∙
𝑒2

𝑑
+ 2 ∙ 2𝑘𝑒

中
10
中
20

中
𝑟𝑒𝑓

2 ∙
𝑒2

𝑑
= 2 ∙ 523.2126 ∗ 10−14𝐽 

𝐸𝐿13 = 65.31273 ∗ 10
6 𝑒𝑉 

 

4. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E2 et EM1 = 

EM2 = E1. 

𝐿14
′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸2
𝐸1 𝐸2
𝐸1 𝐸1
𝐸1 𝐸1

) 

 

Le cas L14 est équivalent au cas L13. Donc, il n’y a que 3 liaisons d’énergies différentes. 

 

4.9.3.2 Cas 2 : Les électrinettes qs et qp sont de même niveau d’énergie E2 

En combinant avec les 4 cas de la nucléonette O2, on obtient les 4 combinaisons suivantes : 

1. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E1. 

𝐿21
′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸1
𝐸2 𝐸1
𝐸2 𝐸1
𝐸2 𝐸1

) 

 

2. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E2. E2 > E1. 

𝐿22 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸2
𝐸2 𝐸2
𝐸2 𝐸2
𝐸2 𝐸2

) 
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L’énergie de liaison s’écrit : 

𝐸𝐿22 = 2 ∙ 4𝑘𝑒
中
20
中
20

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
= 2 ∙ 8388.681082 ∗ 10−14 𝐽 = 1047.161 ∗ 106 𝑒𝑉 

 

3. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E1 et EM1 = 

EM2 = E2. 

𝐿23 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸1
𝐸2 𝐸1
𝐸2 𝐸2
𝐸2 𝐸2

) 

 
L’énergie de liaison s’écrit : 

𝐸𝐿23 = 2 ∙ 2𝑘𝑒
中
20
中
10

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
+ 2 ∙ 2𝑘𝑒

中
20
中
20

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
= 2 ∙ 4664.786844 ∗ 10−14 𝐽 

𝐸𝐿23 = 582.3062 ∗  10
6 𝑒𝑉 

 

4. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E2 et EM1 = 

EM2 = E1. 

𝐿24
′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸2
𝐸2 𝐸2
𝐸2 𝐸1
𝐸2 𝐸1

) 
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Le cas L21 est équivalent au cas L12. Le cas L24 est équivalent au cas L23. Donc, il n’y a que 2 liaisons 

d’énergies différentes. 

 

4.9.3.3 Cas 3 : Les électrinettes qs et qp sont de différent niveau d’énergie E1 et E2 

En combinant avec les 4 cas de la nucléonette O2, on obtient les 4 combinaisons suivantes : 

1. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E1. 

𝐿31
′′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸1
𝐸1 𝐸1
𝐸2 𝐸1
𝐸2 𝐸1

) 

 

2. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E2. E2 > E1. 

𝐿32
′′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸2
𝐸1 𝐸2
𝐸2 𝐸2
𝐸2 𝐸2

) 

 

3. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E1 et EM1 = 

EM2 = E2. 

𝐿33 = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸1
𝐸1 𝐸1
𝐸2 𝐸2
𝐸2 𝐸2

) 

 
L’énergie de liaison s’écrit : 

𝐸𝐿33 = 2 ∙ 2𝑘𝑒
中
10
中
10

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
+ 2 ∙ 2𝑘𝑒

中
20
中
20

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑
= 2 ∙ 4247.1068158 ∗ 10−14 𝐽 

𝐸𝐿33 = 530.1671 ∗  10
6 𝑒𝑉 

 

4. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E2 et EM1 = 

EM2 = E1. 

𝐿34
′′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸1 𝐸2
𝐸1 𝐸2
𝐸2 𝐸1
𝐸2 𝐸1

) 
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Le cas L31 est équivalent au cas L13. Le cas L32 est équivalent au cas L23. Le cas L34 est équivalent au cas 

L12. Donc, il n’y a que 1 liaison d’énergies différentes. 

 

4.9.3.4 Cas 4 : Les électrinettes qs et qp sont de différent niveau d’énergie E2 et E1 

En combinant avec les 4 cas de la nucléonette O2, on obtient les 4 combinaisons suivantes : 

1. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E1. 

𝐿41
′′′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸1
𝐸2 𝐸1
𝐸1 𝐸1
𝐸1 𝐸1

) 

 

2. Les électrinettes qW1, qW2, qM1 et qM2 ont le même niveau d’énergie E2. E2 > E1. 

𝐿42
′′′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸2
𝐸2 𝐸2
𝐸1 𝐸2
𝐸1 𝐸2

) 

 

3. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E1 et EM1 = 

EM2 = E2. 

𝐿43
′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸1
𝐸2 𝐸1
𝐸1 𝐸2
𝐸1 𝐸2

) 

 

4. Les électrinettes qW1, qW2, qM1 et qM2 ont 2 différents niveaux d’énergie EW1 = EW2 = E2 et EM1 = 

EM2 = E1. 

𝐿44
′ = (

𝑆1 𝑊1
𝑆2 𝑊2
𝑃1 𝑀1
𝑃2 𝑀2

) = (

𝐸2 𝐸2
𝐸2 𝐸2
𝐸1 𝐸1
𝐸1 𝐸1

) 

 

Le cas L41 est équivalent au cas L12. Le cas L42 est équivalent au cas L23. Le cas L43 est équivalent au cas 

L12. Le cas L44 est équivalent au cas L33. Donc, il n’y a que 0 liaison d’énergies différentes. 

 

4.9.3.5 Conclusion  

Le bilan des liaisons énergétiques compte 6 niveaux différents. 
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Numéro 

Liaison 

Couple SP, WM Niveau d’énergie 

en MeV 

Configurations possible Ln 

L11 (E1, E1), (E1, E1) 13.173648 Proton – proton 1 

L12 (E1, E1), (E2, E2) 117.4518 Proton – neutron 3 

L13 (E1, E1), (E1, E2) 65.31273 Proton – nucleon 2 

L14 (E1, E1), (E2, E1) 65.31273 Proton – nucleon 2 

L21 (E2, E2), (E1, E1) 117.4518 Neutron - Proton 3 

L22 (E2, E2), (E2, E2) 1047.161 Neutron – neutron 6 

L23 (E2, E2), (E1, E2) 582.3062 Neutron – nucleon 5 

L24 (E2, E2), (E2, E1) 582.3062 Neutron – nucleon 5 

L31 (E1, E2), (E1, E1) 65.31273 Nucleon – Proton 2 

L32 (E1, E2), (E2, E2) 582.3062 Nucleon – neutron 5 

L33 (E1, E2), (E1, E2) 530.1671 Nucleon – Nucleon 4 

L34 (E1, E2), (E2, E1) 117.4518 Nucleon – Nucleon 3 

L41 (E2, E1), (E1, E1) 65.31273 Nucleon – Proton 2 

L42 (E2, E1), (E2, E2) 582.3062 Nucleon – neutron 5 

L43 (E2, E1), (E1, E2) 117.4518 nucleon – nucleon 3 

L44 (E2, E1), (E2, E1) 530.1671 Nucleon – Nucleon 4 

 

Les valeurs de ce tableau sont approximatives. 

La liaison ayant la moindre énergie, donc la plus stable est entre 2 protons. Mais, l’existence de deux 

charges positives impose une force répulsive qui fragilise cette liaison. 

La liaison ayant le plus d’énergie, donc la moins stable est entre 2 neutrons. 

Les liaisons incluant un neutron peuvent être la deuxième plus stable. 

 

4.9.4 Modélisation des liaisons entre 2 nucléonettes. 
La liaison entre les électrinettes de 2 nucléonettes reste semblable à celle entre 2 nucléons purs de 

type 2. Il est possible de combiner 6 nucléonettes en chaine rebouclée dans un même plan. Puis de 

continuer sur la périphérie dans le même plan. 

La différence avec les nucléons est qu’il n’y a pas d’électrinettes libres pour pouvoir empiler un autre 

plan en parallèle au premier plan. 

Un bloc de 2 nucléonettes pourrait être le neutrino ντ du modèle standard dont la masse est 1.777 

GeV. 

 

4.9.5 Modélisation du noyau de deutérium 
Le noyau de deutérium est composé d’un proton et d’un neutron. Quelle est la position relative entre 

ces deux nucléons ? 

Les liaisons possibles sont au nombre de 15 (toutes les lignes sauf L11 et L22). Leur niveau d’énergie 

est classé dans l’ordre croissant : EL0, EL2, EL3, EL4 et EL5. 
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4.9.5.1 Cas 0 : Le niveau d’énergie Ede0 

En prenant la combinaison ayant une énergie négative, on a : 

Ede0 = EL0 = -2.224694 MeV 

 

Ce cas se produit lorsque l’environnement est suffisamment refroidi. En effet, si l’environnement est 

celui des plasmas, les liaisons de faible énergie sont cassées, comme celles entre les électrons et le 

noyau d’un atome. C’est la dernière liaison établie lors du processus de refroidissement. 

 

4.9.5.2 Cas 2 : Le niveau d’énergie Ede2 

En prenant la combinaison ayant une énergie EL2, on a : 

Ede2 = EL2 = 65.313 MeV 

 

 

4.9.5.3 Cas 3 : Le niveau d’énergie Ede3 

En prenant la combinaison ayant une énergie EL3, on a : 

Ede3 = EL3 = 117.45 MeV 
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4.9.5.4 Cas 4 : Le niveau d’énergie Ede4 

En prenant la combinaison ayant une énergie EL4, on a : 

Ede4 = EL4 = 530.17 MeV 

 

 

4.9.5.5 Cas 5 : Le niveau d’énergie Ede5 

En prenant la combinaison ayant une énergie EL5, on a : 

Ede5 = EL5 = 582.31 MeV 

 

Cette combinaison a le plus d’énergie. Ce cas est formé lorsque le niveau d’énergie de 

l’environnement dépasse une certaine valeur. C’est le premier cas qui apparait lors du 

refroidissement après la fusion. 

 

4.9.5.6 Conclusion  

Le bilan des liaisons compte 5 niveaux différents.  

No Combi- 

naison 

Energie de 

liaison 

Stabilité 

statique 

Stabilité 

dynamique 

Stabilité 

électrique 

Commentaire 

1 De0 -2.224694 10 1 10 Empilage taux + 

2 De2 65.313 1 60 0 basse énergie taux n0 

3 De3 117.45 1 100 20 basse énergie taux ++ 

4 De4 530.17 1 500 -20 mi énergie taux -- 

5 De5 582.31 1 600 0 mi énergie taux n0 
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Durant le processus de refroidissement, les cas de deutérium se produisent dans l’ordre décroissant 

des 5 niveaux. D’abord, les noyaux deutérium d’énergie Ede4. Ensuite, la température baisse, les 

noyaux deutérium d’énergie Ede3. Ainsi de suite. 

Bien sûr, excepte le cas EL0, les nucléons doivent satisfaire les conditions de synchronisation. 

 

4.9.6 Modélisation du noyau de tritium 
Le noyau de tritium est composé d’un proton et de deux neutrons. Quelle est la position relative 

entre ces trois nucléons ? 

La liaison entre le proton et le premier neutron a les mêmes possibilités que pour le deutérium. 

Pour relier le neutron restant, il y a de multiples possibilités pour le coller au neutron déjà fixé ou au 

proton. 

 

4.9.6.1 Cas 0n : Le niveau d’énergie Etr0n 

En prenant la combinaison ayant une énergie négative, on a : 

Etr0n = -4.241 082 MeV 

La première liaison est Ltr0n. Le proton est en parallèle avec le premier neutron. 

 

4.9.6.1.1 Cas 00 : Le niveau d’énergie Etr00 

En prenant la combinaison ayant une énergie négative pour le deuxième neutron, on a : 

Etr00 = -8.482 164 MeV (valeur expérimentale) 

Les deux liaisons sont notées Ltr00. Le deuxième neutron est en parallèle avec le proton. 
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Ce sont les dernières liaisons établies lors du processus de refroidissement. 

Les énergies de liaison sont calculables de la même façon que pour le deutérium. 

Les coordonnées des points D, D’, D’’, J, J’, J’’, A, A’, A’’, G, G’ et G’’ dans le repère global sont : 

𝑂𝐷⃗⃗⃗⃗⃗⃗ = 2 ∙ 𝑂𝑂2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷(𝑥, 𝑦, 𝑧) = 2𝑂2 (−
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐷 (−√3

𝑟

√3
, 0, −

𝑟

√3
) = 𝐷(−𝑟, 0, −

𝑟

√3
) 

𝐷′(𝑥, 𝑦, 𝑧) = 𝐷′(−𝑟,−2𝑟,−
𝑟

√3
) 

𝐷′′(𝑥, 𝑦, 𝑧) = 𝐷′′(−𝑟,−4𝑟,−
𝑟

√3
) 

 

𝐴(𝑥, 𝑦, 𝑧) = 2𝑂3 (
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐴 (√3

𝑟

√3
, 0,−

𝑟

√3
) = 𝐴(𝑟, 0,−

𝑟

√3
) 

𝐴′(𝑥, 𝑦, 𝑧) = 𝐴′(𝑟, −2𝑟,−
𝑟

√3
) 

𝐴′′(𝑥, 𝑦, 𝑧) = 𝐴′′(𝑟, −4𝑟,−
𝑟

√3
) 
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𝐽(𝑥, 𝑦, 𝑧) = 2𝑂1(0,0, 𝑧0) = 𝐽 (0,0,2
𝑟

√3
) = 𝐽(0,0,

2𝑟

√3
) 

𝐽′(𝑥, 𝑦, 𝑧) = 𝐽′(0,−2𝑟,
2𝑟

√3
) 

𝐽′′(𝑥, 𝑦, 𝑧) = 𝐽′′(0, −4𝑟,
2𝑟

√3
) 

 

𝐺(𝑥, 𝑦, 𝑧) = 𝐺(0,0,0) 

𝐺′(𝑥, 𝑦, 𝑧) = 𝐺′(0,−2𝑟, 0) 

𝐺′′(𝑥, 𝑦, 𝑧) = 𝐺′′(0,−4𝑟, 0) 

 

Déterminer les énergies potentielles entre les couples de charges électriques du premier neutron et 

le proton : 

𝐸 = 𝐸𝐴
𝐴′ + 𝐸𝐷

𝐷′ + 𝐸𝐽
𝐽′ + 𝐸𝐷

𝐽′ + 𝐸𝐽
𝐷′ + 𝐸𝐺

𝐴′ − 𝐸𝐴
𝐷′ − 𝐸𝐴

𝐽′ − 𝐸𝐷
𝐴′ − 𝐸𝐽

𝐴′ − 𝐸𝐺
𝐷′ − 𝐸𝐺

𝐽′  

𝐸𝑥
𝑦′
= 𝑘𝑒

中
𝑥
∙中

𝑦′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑥
𝑦′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝐵 ∙中𝛿𝑦′′

) (中
𝑟𝑒𝑓
+ α𝐵 ∙中𝛿𝑦′′

) 𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑥
𝑦′

 

Les termes en plus sont définis comme suit : 

• αB : le coefficient de proportionnalité de la charge neutre affectant le tritium. 

• 中 δy’’ : la charge neutre du tritium sans les électrinettes statiques. 

 

𝐸 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐵 ∙中𝛿𝑦′′

)
2

中
𝑟𝑒𝑓

2  

Ici,  

E = Etr00 /2 = -4.241 082 MeV = 6.794976759*10-13 J. 

On en déduit la valeur de αB : 

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

= (中
𝑟𝑒𝑓
+ α𝐵 ∙中𝛿𝑦′′

)
2

 

α𝐵 ∙中𝛿𝑦′′
= √

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

− (中
𝑟𝑒𝑓
) 

On a : 
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中
𝛿𝑦′′

= 8(中
𝐹
+中

𝐹
+中

𝐻
) + 10(中

𝐻
+中

𝐻
+中

𝐹
) = 2300.946 702 ∙ 10−31 𝑘𝑔 

中
𝑟𝑒𝑓

= 9.1 ∙ 10−31 

 

α𝐵中𝛿𝑦′′
= √

6.794976759 ∙ 10−13 ∙ 82.81 ∙ 10−62 ∙ 4 ∙ 0.36373 ∙ 10−15

8.987552 ∙ 1.6021772 ∙ 10−29 ∙ [6 − 2√2 − √3]
− 9.1 ∙ 10−31 

α𝐵中𝛿𝑦′′
= √

24.650693695 ∙ 10−61

1.0
− 9.1 ∙ 10−31 

α𝐵中𝛿𝑦′′
= 15.700 539 384 ∙ 10−31 − 9.1 ∙ 10−31 

α𝐵 ∙ 2300.946702 ∙ 10
−31 = 6.600 539 384 ∙ 10−31 

α𝐵 = 0.002 868 619 

 

4.9.6.1.2 Cas 02 : Le niveau d’énergie Etr02 

En prenant la combinaison ayant une énergie EL2 pour le deuxième neutron, on a : 

Etr02 = Etr0n + EL2 = 65.313 - 4.241 082 MeV = 61.072 MeV 

 

 

4.9.6.1.3 Cas 03 : Le niveau d’énergie Etr03 

En prenant la combinaison ayant une énergie EL3 pour le deuxième neutron, on a : 

Etr03 = Etr0n + EL3 = 117.45 - 4.241 082 MeV = 113.209 MeV 
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4.9.6.1.4 Cas 04 : Le niveau d’énergie Etr04 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

Etr04 = Etr0n + EL4 = 530.1671 - 4.241 082 MeV = 525.926 MeV 

                          

 

4.9.6.1.5 Cas 05 : Le niveau d’énergie Etr05 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

Etr05 = Etr0n + EL5 = 582.3062 - 4.241 082 MeV = 578.065 MeV 

                                

 

4.9.6.1.6 Cas 06 : Le niveau d’énergie Etr06 

En prenant la combinaison ayant une énergie EL6 pour le deuxième neutron, on a : 

Etr06 = Etr0n + EL6 = 1047.161 - 4.241 082 MeV = 1042.92 MeV 
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4.9.6.2 Cas 2n : Le niveau d’énergie Etr2n 

En prenant la combinaison ayant une énergie EL2, on a : 

Etr2n = EL2 = 65.31273 MeV 

La première liaison est L2n. Le proton est en côte à côte avec le premier neutron. 

 

4.9.6.2.1 Cas 23 : Le niveau d’énergie Etr23 

En prenant la combinaison ayant une énergie EL3 pour le deuxième neutron, on a : 

 Etr23 = EL2 + EL3 = 65.31273 + 117.4518 MeV = 182.76 MeV  

                   

 

4.9.6.2.2 Cas 24 : Le niveau d’énergie Etr24 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

 Etr24 = EL2 + EL4 = 65.31273 + 530.1671 MeV = 595.48 MeV  
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4.9.6.2.3 Cas 25 : Le niveau d’énergie Etr25 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Etr25 = EL2 + EL5 = 65.31273 + 582.3062 MeV = 647.62 MeV  

                 

 

4.9.6.2.4 Cas 26 : Le niveau d’énergie Etr26 

En prenant la combinaison ayant une énergie EL6 pour le deuxième neutron, on a : 

 Etr26 = EL2 + EL6 = 65.31273 + 1047.161 MeV = 1112.47 MeV  

 

 

4.9.6.3 Cas 3n : Le niveau d’énergie Etr3n 

En prenant la combinaison ayant une énergie EL3, on a : 

Etr3n = EL3 = 117.4518 MeV 

La première liaison est L3n. Le proton est en côte à côte avec le premier neutron. 

 

4.9.6.3.1 Cas 33 : Le niveau d’énergie Etr33 

En prenant la combinaison ayant une énergie EL3 pour le deuxième neutron, on a : 

 Etr33 = EL3 + EL3 = 117.4518 + 117.4518 MeV = 234.90 MeV  
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4.9.6.3.2 Cas 34 : Le niveau d’énergie Etr34 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

 Etr34 = EL3 + EL4 = 117.4518 + 530.1671 MeV = 647.62 MeV  

                       

 

4.9.6.3.3 Cas 35 : Le niveau d’énergie Etr35 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Etr35 = EL3 + EL5 = 117.4518 + 582.3062 MeV = 699.76 MeV  

                           

 

4.9.6.3.4 Cas 36 : Le niveau d’énergie Etr36 

En prenant la combinaison ayant une énergie EL6 pour le deuxième neutron, on a : 

 Etr36 = EL3 + EL6 = 117.4518 + 1047.161 MeV = 1164.61 MeV  
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4.9.6.4 Cas 4n : Le niveau d’énergie Etr4n 

En prenant la combinaison ayant une énergie EL4, on a : 

Etr4n = EL4 = 530.1671 MeV 

La première liaison est L4n. Le proton est en côte à côte avec le premier neutron. 

 

4.9.6.4.1 Cas 44 : Le niveau d’énergie Etr44 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

 Etr44 = EL4 + EL4 = 530.1671 + 530.1671 MeV = 1060.33 MeV  

                            

 

4.9.6.4.2 Cas 45 : Le niveau d’énergie Etr45 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Etr45 = EL4 + EL5 = 530.1671 + 582.3062 MeV = 1112.47 MeV  
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4.9.6.4.3 Cas 46 : Le niveau d’énergie Etr46 

En prenant la combinaison ayant une énergie EL6 pour le deuxième neutron, on a : 

 Etr46 = EL4 + EL6 = 530.1671 + 1047.161 MeV = 1577.33 MeV  

 

 

4.9.6.5 Cas 5n : Le niveau d’énergie Etr4n 

En prenant la combinaison ayant une énergie EL5, on a : 

Etr5n = EL5 = 582.3062 MeV 

La première liaison est L5n. Le proton est en côte à côte avec le premier neutron. 

 

4.9.6.5.1 Cas 55 : Le niveau d’énergie Etr55 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Etr55 = EL5 + EL5 = 582.3062 + 582.3062 MeV = 1164.61 MeV  
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4.9.6.6 Conclusion  

Le bilan des liaisons compte 18 niveaux différents d’énergie.  

No Combi- 

naison 

Energie de 

liaison 

Stabilité 

statique 

Stabilité 

dynamique 

Stabilité 

électrique 

Commentaire 

1 Tr00 -8.4822 10 1 10 Empilage taux + 

2 Tr02 61.072 10 60 0 basse énergie taux n0 

3 Tr03 113.209 10 100 20 basse énergie taux ++ 

4 Tr23 182.76 1 200 20 basse énergie taux ++ 

5 Tr33 234.90 1 200 40 basse énergie taux ++++ 

6 Tr04 525.93 10 500 -20 mi énergie taux -- 

7 Tr05 578.07 10 600 0 mi énergie taux n0 

8 Tr24 595.48 1 600 -20 mi énergie taux -- 

9 Tr25 647.62 1 600 0 Mi énergie taux n0 

10 Tr34 647.62 1 600 0 mi énergie taux n0 

11 Tr35 699.76 1 700 20 mi énergie taux ++ 

12 Tr06 1042.92 10 1000 -20 haute énergie taux -- 

13 Tr44 1060.33 1 1000 -40 haute énergie taux ---- 

14 Tr26 1112.47 1 1000 -20 haute énergie taux -- 

15 Tr45 1112.47 1 1100 -20 haute énergie taux -- 

16 Tr36 1164.61 1 1000 0 haute énergie taux n0 

17 Tr55 1164.61 1 1100 0 haute énergie taux n0 

18 Tr46 1577.33 1 1500 -40 haute énergie taux ---- 

 

La configuration Tr33 apparait comme un cas basse énergie stable à taux de présence élevé. 

 

4.9.7 Modélisation du noyau d’hélium 4 
Le noyau d’hélium 4 est composé de deux protons et de deux neutrons. Quelle est la position relative 

entre ces quatre nucléons ? 

Pour décrire les configurations possibles, on part de la description du tritium, pour chacun de ses cas, 

un proton sera rajouté. 

4.9.7.1 Cas 0n : Le niveau d’énergie Ehe0n 

En prenant la combinaison ayant une énergie négative pour la première liaison, on a : 

Ehe0n = -9. 432 500 MeV 
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La première liaison est Lhe0n. Le premier proton est en parallèle avec le premier neutron. 

4.9.7.1.1 Cas 00 : Le niveau d’énergie Ehe00 

En prenant la combinaison ayant une énergie négative pour le deuxième neutron, on a : 

Ehe00 = Ehe0n + Ehe0n = -18.865 00 MeV 

Les deux liaisons sont notées Lhe00. Le deuxième neutron est en parallèle avec le premier proton. 

Le cas P-N-P n’est pas étudié ici. 

4.9.7.1.1.1 Cas 000 : Le niveau d’énergie Ehe000 

Le dernier proton prend le niveau d’énergie négative : 

Ehe000 = Ehe00 + Ehe0n = Ehe0n + Ehe0n + Ehe0n = -28. 297 499 MeV 

Les 4 nucléons sont empilés selon la façon suivante : 

• N-P-N-P 
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Les énergies de liaison sont calculables de la même façon que pour le tritium. 

Les coordonnées des points D, D’, D’’, D’3, J, J’, J’’, J’3, A, A’, A’’, A’3, G, G’, G’’ et G’3 dans le repère 

global sont : 

𝑂𝐷⃗⃗⃗⃗⃗⃗ = 2 ∙ 𝑂𝑂2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝐷(𝑥, 𝑦, 𝑧) = 2𝑂2 (−
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐷 (−√3

𝑟

√3
, 0, −

𝑟

√3
) = 𝐷(−𝑟, 0, −

𝑟

√3
) 

𝐷′(𝑥, 𝑦, 𝑧) = 𝐷′(−𝑟,−2𝑟,−
𝑟

√3
) 

𝐷′′(𝑥, 𝑦, 𝑧) = 𝐷′′(−𝑟,−4𝑟,−
𝑟

√3
) 

𝐷′3(𝑥, 𝑦, 𝑧) = 𝐷′3(−𝑟,−6𝑟,−
𝑟

√3
) 
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𝐴(𝑥, 𝑦, 𝑧) = 2𝑂3 (
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐴 (√3

𝑟

√3
, 0,−

𝑟

√3
) = 𝐴(𝑟, 0,−

𝑟

√3
) 

𝐴′(𝑥, 𝑦, 𝑧) = 𝐴′(𝑟, −2𝑟,−
𝑟

√3
) 

𝐴′′(𝑥, 𝑦, 𝑧) = 𝐴′′(𝑟, −4𝑟,−
𝑟

√3
) 

𝐴′3(𝑥, 𝑦, 𝑧) = 𝐴′3(𝑟, −6𝑟,−
𝑟

√3
) 

 

 

𝐽(𝑥, 𝑦, 𝑧) = 2𝑂1(0,0, 𝑧0) = 𝐽 (0,0,2
𝑟

√3
) = 𝐽(0,0,

2𝑟

√3
) 

𝐽′(𝑥, 𝑦, 𝑧) = 𝐽′(0,−2𝑟,
2𝑟

√3
) 

𝐽′′(𝑥, 𝑦, 𝑧) = 𝐽′′(0, −4𝑟,
2𝑟

√3
) 

𝐽′3(𝑥, 𝑦, 𝑧) = 𝐽′3(0, −6𝑟,
2𝑟

√3
) 

 

 

𝐺(𝑥, 𝑦, 𝑧) = 𝐺(0,0,0) 

𝐺′(𝑥, 𝑦, 𝑧) = 𝐺′(0,−2𝑟, 0) 

𝐺′′(𝑥, 𝑦, 𝑧) = 𝐺′′(0,−4𝑟, 0) 

𝐺′3(𝑥, 𝑦, 𝑧) = 𝐺′3(0,−6𝑟, 0) 

 

 

Déterminer les énergies potentielles entre les couples de charges électriques du premier neutron et 

le proton : 

𝐸 = 𝐸𝐴
𝐴′ + 𝐸𝐷

𝐷′ + 𝐸𝐽
𝐽′ + 𝐸𝐷

𝐽′ + 𝐸𝐽
𝐷′ + 𝐸𝐺

𝐴′ − 𝐸𝐴
𝐷′ − 𝐸𝐴

𝐽′ − 𝐸𝐷
𝐴′ − 𝐸𝐽

𝐴′ − 𝐸𝐺
𝐷′ − 𝐸𝐺

𝐽′  

𝐸𝑥
𝑦′
= 𝑘𝑒

中
𝑥
∙中

𝑦′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑥
𝑦′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝐶 ∙中𝛿𝑦′3

)
2
𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑥
𝑦′

 

Les termes en plus sont définis comme suit : 

• αC : le coefficient de proportionnalité de la charge neutre affectant l’hélium. 

• 中 δy’3 : la charge neutre de l’hélium sans les électrinettes statiques. 
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𝐸 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐶 ∙中𝛿𝑦′3

)
2

中
𝑟𝑒𝑓

2  

Ici,  

E = Ehe000 /3 =  -9.432 499 667 MeV = -15.112 562 316*10-13 J. 

On en déduit la valeur de αC : 

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

= (中
𝑟𝑒𝑓
+ α𝐶 ∙中𝛿𝑦′3

)
2
 

α𝐶 ∙中𝛿𝑦′3
= √

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

− (中
𝑟𝑒𝑓
) 

On a : 

中
𝛿𝑦′3

= 12(中
𝐹
+中

𝐹
+中

𝐻
) + 12(中

𝐻
+中

𝐻
+中

𝐹
) = 2979.643212 ∙ 10−31 𝑘𝑔 

中
𝑟𝑒𝑓

= 9.1 ∙ 10−31 

 

α𝐶中𝛿𝑦′3
= √

15.112562316 ∙ 10−13 ∙ 82.81 ∙ 10−62 ∙ 4 ∙ 0.36373 ∙ 10−15

8.987552 ∙ 1.6021772 ∙ 10−29 ∙ [6 − 2√2 − √3]
− 9.1 ∙ 10−31 

α𝐶中𝛿𝑦′3
= √

54.825080027 ∙ 10−61

1.0
− 9.1 ∙ 10−31 

α𝐶中𝛿𝐶
= 23.414 756 037 ∙ 10−31 − 9.1 ∙ 10−31 

α𝐶 ∙ 2979.643212 ∙ 10
−31 = 14.314 756 037 ∙ 10−31 

α𝐶 = 0.004 804 185 

A comparer au coefficient calculé avec la configuration He0330, mais les liaisons radiales à énergie 

négative : 

α𝑔 = 0.004 551 266 

Approximativement, ils sont équivalents. 

 

4.9.7.1.1.2 Cas 001 : Le niveau d’énergie Ehe001 

Le dernier proton prend le niveau d’énergie EL1 : 

Ehe001 = Ehe00 + EL1 = 13.173648 -18.865 = -5.691 351 MeV 
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4.9.7.1.1.3 Cas 002 : Le niveau d’énergie Ehe002 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe002 = Ehe00 + EL2 = 65.31273 -18.865 = 46.448 MeV 

 

4.9.7.1.1.4 Cas 003 : Le niveau d’énergie Ehe003 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe003 = Ehe00 + EL3 = 117.45 - 18.865 MeV = 98.585 MeV 

         

4.9.7.1.1.5 Cas 004 : Le niveau d’énergie Ehe004 

Le dernier proton prend le niveau d’énergie EL4 : 

Ehe004 = Ehe00 + EL4 = 530.1671 - 18.865 MeV = 511.302 MeV 
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4.9.7.1.1.6 Cas 005 : Le niveau d’énergie Ehe005 

Le dernier proton prend le niveau d’énergie EL5 : 

Ehe005 = Ehe00 + EL5 = 582.3062 - 18.865 MeV = 563.441 MeV 

 

 

4.9.7.1.2 Cas 01 : Le niveau d’énergie Ehe01 

En prenant la combinaison ayant une énergie EL1 pour le deuxième neutron, on a : 

Ehe01 = Ehe0n + EL1 = 13.173648 - 9.4325 MeV = 3.741 147 667 MeV 

 

4.9.7.1.2.1 Cas 010 : Le niveau d’énergie Ehe010 

Le dernier proton prend le niveau d’énergie Ehe0n : 

Ehe010 = Ehe0n + EL1 + Ehe0n = - 9.4325 + 13.173648 - 9.4325 = -5.691 351 MeV 
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4.9.7.1.2.2 Cas 013 : Le niveau d’énergie Ehe013 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe013 = Ehe0n + EL1 + EL3 = 117.4518 + 13.173648 - 9.4325 = 121.191 MeV 

         

4.9.7.1.2.3 Cas 014 : Le niveau d’énergie Ehe014 

Le dernier proton prend le niveau d’énergie EL4 : 

Ehe014 = Ehe0n + EL1 + EL4 = 530.1671 + 13.173648 - 9.4325 = 533.908 MeV 

         

4.9.7.1.2.4 Cas 015 : Le niveau d’énergie Ehe015 

Le dernier proton prend le niveau d’énergie EL5 : 

Ehe015 = Ehe0n + EL1 + EL5 = 582.3062 + 13.173648 - 9.4325 = 586.047348 MeV 
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4.9.7.1.2.5 Cas 0160 : Le niveau d’énergie Ehe0160 

Le dernier proton prend le niveau d’énergie EL6 et le niveau d’énergie Ehe0n : 

Ehe0160 = Ehe0n + EL1 + EL6 + Ehe0n = 1047.161 + 13.173648 - 9.4325 - 9.4325 = 1041.469648 MeV 

 

 

4.9.7.1.3 Cas 02 : Le niveau d’énergie Ehe02 

En prenant la combinaison ayant une énergie EL2 pour le deuxième neutron, on a : 

Ehe02 = Ehe0n + EL2 = 65.313 - 9.4325 MeV = 55.8805 MeV 

 
 

4.9.7.1.3.1 Cas 022 : Le niveau d’énergie Ehe022 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe022 = Ehe0n + EL2 + EL2 = 65.31273 + 65.31273 - 9.4325 = 121.19296 MeV 
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4.9.7.1.3.2 Cas 023 : Le niveau d’énergie Ehe023 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe023 = Ehe0n + EL2 + EL3 = 117.4518 + 65.31273 - 9.4325 = 173.33203 MeV 

  

4.9.7.1.3.3 Cas 024 : Le niveau d’énergie Ehe024 

Le dernier proton prend le niveau d’énergie EL4 : 

Ehe024 = Ehe0n + EL2 + EL4 = 530.1671 + 65.31273 - 9.4325 = 586.04733 MeV 

                 

4.9.7.1.3.4 Cas 025 : Le niveau d’énergie Ehe025 

Le dernier proton prend le niveau d’énergie EL5 : 

Ehe025 = Ehe0n + EL2 + EL5 = 582.3062 + 65.31273 - 9.4325 = 638.18643 MeV 
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4.9.7.1.3.5 Cas 0250 : Le niveau d’énergie Ehe0250 

Le dernier proton prend le niveau d’énergie EL5 et le niveau d’énergie EL0 : 

Ehe022 = Ehe0n + EL2 + EL5 + Ehe0n = 582.3062 + 65.31273 - 9.4325 - 9.4325 = 628.75393 MeV 

 

 

4.9.7.1.4 Cas 03 : Le niveau d’énergie Ehe03 

En prenant la combinaison ayant une énergie EL3 pour le deuxième neutron, on a : 

Ehe03 = Ehe0n + EL3 = 117.45 - 9.4325 MeV = 108.0193 MeV 

                                    

4.9.7.1.4.1 Cas 031 : Le niveau d’énergie Ehe031 

Le dernier proton prend le niveau d’énergie EL1 : 

Ehe031 = Ehe0n + EL3 + EL1 = 13.173648 + 117.4518 - 9.4325 = 121.192948 MeV 
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4.9.7.1.4.2 Cas 032 : Le niveau d’énergie Ehe032 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe032 = Ehe0n + EL3 + EL2 = 65.31273 + 117.4518 - 9.4325 = 173.33203 MeV 

Ce cas est identique au cas Ehe012. 

4.9.7.1.4.3 Cas 033 : Le niveau d’énergie Ehe033 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe033 = Ehe0n + EL3 + EL3 = 117.4518 + 117.4518 - 9.4325 = 225.4711 MeV 

 

4.9.7.1.4.4 Cas 0330 : Le niveau d’énergie Ehe0330 

Le dernier proton prend le niveau d’énergie EL3 et le niveau d’énergie 0 : 

Ehe022 = Ehe0n + EL3 + EL3 + Ehe0n = 117.4518 + 117.4518 - 9.4325 - 9.4325 = 216.0386 MeV 

 

4.9.7.1.4.5 Cas 034 : Le niveau d’énergie Ehe034 

Le dernier proton prend le niveau d’énergie EL4 :  

Ehe034 = Ehe0n + EL3 + EL4 = 530.1671 + 117.4518 - 9.4325 = 638.1864 MeV 
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4.9.7.1.4.6 Cas 035 : Le niveau d’énergie Ehe035 

Le dernier proton prend le niveau d’énergie EL5 :  

Ehe035 = Ehe0n + EL3 + EL5 = 582.3062 + 117.4518 - 9.4325 = 690.3255 MeV 

 

 

 

4.9.7.1.5 Cas 04 : Le niveau d’énergie Ehe04 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

Ehe04 = Ehe0n + EL4 = 530.1671 - 9.4325 MeV = 520.7346 MeV 

                          

4.9.7.1.5.1 Cas 041 : Le niveau d’énergie Ehe041 

Le dernier proton prend le niveau d’énergie EL1 : 

Ehe041 = Ehe0n + EL4 + EL1 = 13.173648 + 530.1671 - 9.4325 = 533.908248 MeV 
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4.9.7.1.5.2 Cas 042 : Le niveau d’énergie Ehe042 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe042 = Ehe0n + EL4 + EL2 = 65.31273 + 530.1671 - 9.4325 = 586.04733 MeV 

            

4.9.7.1.5.3 Cas 043 : Le niveau d’énergie Ehe043 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe043 = Ehe0n + EL4 + EL3 = 117.4518 + 530.1671 - 9.4325 = 638.1864 MeV 

         

4.9.7.1.5.4 Cas 044 : Le niveau d’énergie Ehe044 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe044 = Ehe0n + EL4 + EL4 = 530.1671 + 530.1671 - 9.4325 = 1050.9017 MeV 
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4.9.7.1.5.5 Cas 0440 : Le niveau d’énergie Ehe0440 

Le dernier proton prend le niveau d’énergie EL4 et le niveau d’énergie Ehe0n : 

Ehe044 = Ehe0n + EL4 + EL4 + Ehe0n = 530.1671 + 530.1671 - 9.4325 - 9.4325 = 1041.4692 MeV 

             

4.9.7.1.5.6 Cas 045 : Le niveau d’énergie Ehe045 

Le dernier proton prend le niveau d’énergie EL5 : 

Ehe045 = Ehe0n + EL4 + EL5 = 530.1671 + 582.3062 - 9.4325 = 1103.0408 MeV 

 

 

4.9.7.1.6 Cas 05 : Le niveau d’énergie Ehe05 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

Ehe05 = Ehe0n + EL5 = 582.3062 - 9.4325 MeV = 572.8737 MeV 
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4.9.7.1.6.1 Cas 051 : Le niveau d’énergie Ehe051 

Le dernier proton prend le niveau d’énergie EL1 : 

Ehe051 = Ehe0n + EL5 + EL1 = 13.173648 + 582.3062 - 9.4325 = 586.047348 MeV 

 

4.9.7.1.6.2 Cas 052 : Le niveau d’énergie Ehe052 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe052 = Ehe0n + EL5 + EL2 = 65.31273 + 582.3062 - 9.4325 = 638.18643 MeV 

Ce cas est identique au cas Ehe025. 

4.9.7.1.6.3 Cas 053 : Le niveau d’énergie Ehe053 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe053 = Ehe0n + EL5 + EL3 = 117.4518 + 582.3062 - 9.4325 = 690.3255 MeV 

Ce cas est identique au cas Ehe035. 

4.9.7.1.6.4 Cas 054 : Le niveau d’énergie Ehe054 

Le dernier proton prend le niveau d’énergie EL4 : 

Ehe054 = Ehe0n + EL5 + EL4 = 530.1671 + 582.3062 - 9.4325 = 1103.0408 MeV 

Ce cas est identique au cas Ehe045. 

4.9.7.1.6.5 Cas 055 : Le niveau d’énergie Ehe055 

Le dernier proton prend le niveau d’énergie EL5 : 

Ehe055 = Ehe0n + EL5 + EL5 = 582.3062 + 582.3062 - 9.4325 = 1155.1799 MeV 
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4.9.7.1.7 Cas 06 : Le niveau d’énergie Ehe06 

En prenant la combinaison ayant une énergie EL6 pour le deuxième neutron, on a : 

Ehe06 = Ehe0n + EL6 = 1047.161 - 9.4325 MeV = 1037.7285 MeV 

 

4.9.7.1.7.1 Cas 060 : Le niveau d’énergie Ehe060 

Le dernier proton prend le niveau d’énergie Ehe0n : 

Ehe060 = Ehe0n + EL6 + Ehe0n = - 9.4325 + 1047.161 - 9.4325 = 1028.296 MeV 

 

4.9.7.1.7.2 Cas 0610 : Le niveau d’énergie Ehe0610 

Le dernier proton prend le niveau d’énergie EL1 et le niveau d’énergie EL0 : 

Ehe0610 = Ehe0n + EL6 + EL1 + Ehe0n = 13.173648 + 1047.161 - 9.4325 - 9.4325 = 1041.469648 MeV 

Ce cas est identique au cas Ehe0160. 

4.9.7.1.7.3 Cas 062 : Le niveau d’énergie Ehe062 

Le dernier proton prend le niveau d’énergie EL2 : 

Ehe062 = Ehe0n + EL6 + EL2 = 65.31273 + 1047.161 - 9.4325 = 1103.04123 MeV 
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4.9.7.1.7.4 Cas 063 : Le niveau d’énergie Ehe063 

Le dernier proton prend le niveau d’énergie EL3 : 

Ehe063 = Ehe0n + EL6 + EL3 = 117.4517 + 1047.161 - 9.4325 = 1155.1802 MeV 

         

4.9.7.1.7.5 Cas 064 : Le niveau d’énergie Ehe064 

Le dernier proton prend le niveau d’énergie EL4 : 

Ehe064 = Ehe0n + EL6 + EL4 = 530.1671 + 1047.161 - 9.4325 = 1567.8956 MeV 

         

 

4.9.7.2 Cas 1n : Le niveau d’énergie Ehe1n 

En prenant la combinaison ayant une énergie EL1 pour la première liaison, on a : 

Ehe1n = EL1 = 13.173648 MeV 

La première liaison est L1n. Le premier proton est en côte à côte avec le deuxième proton. 
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4.9.7.2.1 Cas 13 : Le niveau d’énergie Ehe13 

En prenant la combinaison ayant une énergie EL3 pour le premier neutron, on a : 

 Ehe13 = EL1 + EL3 = 13.173648 + 117.4518 MeV = 130.63 MeV  

 

4.9.7.2.1.1 Cas 133 : Le niveau d’énergie Ehe133 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe133 = EL1 + EL3 + EL3 = 13.173648 + 117.4518 + 117.4518 MeV = 248.08 MeV 

         

4.9.7.2.1.2 Cas 134 : Le niveau d’énergie Ehe134 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe134 = EL1 + EL3 + EL4 = 13.173648 + 117.4518 + 530.1671 MeV = 660.79 MeV 
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4.9.7.2.1.3 Cas 135 : Le niveau d’énergie Ehe135 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe135 = EL1 + EL3 + EL5 = 13.173648 + 117.4518 + 582.3062 MeV = 712.93 MeV 

     

4.9.7.2.1.4 Cas 136 : Le niveau d’énergie Ehe136 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe136 = EL1 + EL3 + EL6 = 13.173648 + 117.4518 + 1047.161 MeV = 1177.79 MeV 
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4.9.7.2.2 Cas 14 : Le niveau d’énergie Ehe14 

En prenant la combinaison ayant une énergie EL4 pour le premier neutron, on a : 

 Ehe14 = EL1 + EL4 = 13.173648 + 530.1671 MeV = 543.34 MeV  

 

4.9.7.2.2.1 Cas 143 : Le niveau d’énergie Ehe143 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe143 = EL1 + EL4 + EL3 = 13.173648 + 530.1671 + 117.4518 MeV = 660.79 MeV 

         

4.9.7.2.2.2 Cas 144 : Le niveau d’énergie Ehe144 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe144 = EL1 + EL4 + EL4 = 13.173648 + 530.1671 + 530.1671 MeV = 1073.51 MeV 

         

4.9.7.2.2.3 Cas 145 : Le niveau d’énergie Ehe145 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe145 = EL1 + EL4 + EL5 = 13.173648 + 530.1671 + 582.3062 MeV = 1125.65 MeV 
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4.9.7.2.2.4 Cas 146 : Le niveau d’énergie Ehe146 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe146 = EL1 + EL4 + EL6 = 13.173648 + 530.1671 + 1047.161 MeV = 1590.50 MeV 

 

 

4.9.7.2.3 Cas 15 : Le niveau d’énergie Ehe15 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Ehe15 = EL1 + EL5 = 13.173648 + 582.3062 MeV = 595.48 MeV  
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4.9.7.2.3.1 Cas 153 : Le niveau d’énergie Ehe153 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe153 = EL1 + EL5 + EL3 = 13.173648 + 582.3062 + 117.4518 MeV = 712.93 MeV 

         

4.9.7.2.3.2 Cas 154 : Le niveau d’énergie Ehe154 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe154 = EL1 + EL5 + EL4 = 13.173648 + 582.3062 + 530.1671 MeV = 1125.65 MeV 

         

4.9.7.2.3.3 Cas 155 : Le niveau d’énergie Ehe155 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe155 = EL1 + EL5 + EL5 = 13.173648 + 582.3062 + 582.3062 MeV = 1177.79 MeV 

         

 

 

4.9.7.3 Cas 2n : Le niveau d’énergie Ehe2n 

En prenant la combinaison ayant une énergie EL2 pour la première liaison, on a : 

Ehe2n =  EL2 = 65.31273 MeV 
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La première liaison est L2n. Le premier proton est en côte à côte avec le premier neutron. 

 

4.9.7.3.1 Cas 22 : Le niveau d’énergie Ehe22 

En prenant la combinaison ayant une énergie EL2 pour le deuxième proton, on a : 

 Ehe22 = EL2 + EL2 = 65.31273 + 65.31273 MeV = 130.63 MeV  

                           

4.9.7.3.1.1 Cas 223 : Le niveau d’énergie Ehe223 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe223 = EL2 + EL2 + EL3 = 65.31273 + 65.31273 + 117.4518 MeV = 248.08 MeV 

 

4.9.7.3.1.2 Cas 224 : Le niveau d’énergie Ehe224 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe224 = EL2 + EL2 + EL4 = 65.31273 + 65.31273 + 530.1671 MeV = 660.79 MeV 
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4.9.7.3.1.3 Cas 225 : Le niveau d’énergie Ehe225 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe225 = EL2 + EL2 + EL5 = 65.31273 + 65.31273 + 582.3062 MeV = 712.93 MeV 

 

4.9.7.3.1.4 Cas 226 : Le niveau d’énergie Ehe226 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe226 = EL2 + EL2 + EL6 = 65.31273 + 65.31273 + 1047.161 MeV = 1177.79 MeV 

 

 

4.9.7.3.2 Cas 23 : Le niveau d’énergie Ehe23 

En prenant la combinaison ayant une énergie EL3 pour le deuxième proton, on a : 

 Etr23 = EL2 + EL3 = 117.4518 + 65.31273 MeV = 182.76 MeV  
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4.9.7.3.2.1 Cas 233 : Le niveau d’énergie Ehe233 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe233 = EL2 + EL3 + EL3 = 65.31273 + 117.4518 + 117.4518 MeV = 300.22 MeV 

         

4.9.7.3.2.2 Cas 234 : Le niveau d’énergie Ehe234 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe234 = EL2 + EL3 + EL4 = 65.31273 + 117.4518 + 530.1671 MeV = 712.93 MeV 

         

4.9.7.3.2.3 Cas 235 : Le niveau d’énergie Ehe235 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe235 = EL2 + EL3 + EL5 = 65.31273 + 117.4518 + 582.3062 MeV = 765.07 MeV 
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4.9.7.3.2.4 Cas 236 : Le niveau d’énergie Ehe236 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe236 = EL2 + EL3 + EL6 = 65.31273 + 117.4518 + 1047.161 MeV = 1229.93 MeV 

         

 

4.9.7.3.3 Cas 24 : Le niveau d’énergie Ehe24 

En prenant la combinaison ayant une énergie EL4 pour le deuxième proton, on a : 

 Ehe24 = EL2 + EL4 = 117.4518 + 530.1671 MeV = 647.62 MeV  

                           

4.9.7.3.3.1 Cas 244 : Le niveau d’énergie Ehe244 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe244 = EL2 + EL4 + EL4 = 65.31273 + 530.1671 + 530.1671 MeV = 1125.65 MeV 
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4.9.7.3.3.2 Cas 245 : Le niveau d’énergie Ehe245 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe245 = EL2 + EL4 + EL5 = 65.31273 + 530.1671 + 582.3062 MeV = 1177.79 MeV 

         

4.9.7.3.3.3 Cas 246 : Le niveau d’énergie Ehe246 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe246 = EL2 + EL4 + EL6 = 65.31273 + 530.1671 + 1047.161 MeV = 1642.64 MeV 

         

 

4.9.7.3.4 Cas 25 : Le niveau d’énergie Ehe25 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Ehe25 = EL2 + EL5 = 65.31273 + 582.3062 MeV = 647.62 MeV  
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4.9.7.3.4.1 Cas 255 : Le niveau d’énergie Ehe255 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe255 = EL2 + EL5 + EL5 = 65.31273 + 582.3062 + 582.3062 MeV = 1229.93 MeV 

 

 

4.9.7.4 Cas 3n : Le niveau d’énergie Ehe3n 

En prenant la combinaison ayant une énergie EL3 pour la première liaison, on a : 

Ehe3n =  EL3 = 117.4518 MeV 

La première liaison est L3n. Le premier proton est en côte à côte avec le premier neutron. 

 

4.9.7.4.1 Cas 33 : Le niveau d’énergie Ehe33 

En prenant la combinaison ayant une énergie EL3 pour le deuxième proton, on a : 

 Ehe33 = EL3 + EL3 = 117.4518 + 117.4518 MeV = 234.90 MeV  
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4.9.7.4.1.1 Cas 333 : Le niveau d’énergie Ehe333 

Le dernier neutron prend le niveau d’énergie EL3 : 

Ehe333 = EL3 + EL3 + EL3 = 117.4518 + 117.4518 + 117.4518 MeV = 352.36 MeV 

         

         

4.9.7.4.1.2 Cas 334 : Le niveau d’énergie Ehe334 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe334 = EL3 + EL3 + EL4 = 117.4518 + 117.4518 + 530.1671 MeV = 765.07 MeV 
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4.9.7.4.1.3 Cas 335 : Le niveau d’énergie Ehe335 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe335 = EL3 + EL3 + EL5 = 117.4518 + 117.4518 + 582.3062 MeV = 817.21 MeV 

     

4.9.7.4.1.4 Cas 336 : Le niveau d’énergie Ehe336 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe336 = EL3 + EL3 + EL6 = 117.4518 + 117.4518 + 1047.161 MeV = 1282.06 MeV 

     

 

4.9.7.4.2 Cas 34 : Le niveau d’énergie Ehe34 

En prenant la combinaison ayant une énergie EL5 pour le deuxième proton, on a : 

 Ehe34 = EL3 + EL4 = 530.1671 + 117.4518 MeV = 647.62 MeV  

         

4.9.7.4.2.1 Cas 344 : Le niveau d’énergie Ehe344 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe344 = EL3 + EL4 + EL4 = 117.4518 + 530.1671 + 530.1671 MeV = 1177.79 MeV 



Modèle XijieDong V3.0 

 

P a g e  176 | 219 

 

         

4.9.7.4.2.2 Cas 345 : Le niveau d’énergie Ehe345 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe345 = EL3 + EL4 + EL5 = 117.4518 + 530.1671 + 582.3062 MeV = 1229.93 MeV 

 

4.9.7.4.2.3 Cas 346 : Le niveau d’énergie Ehe346 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe346 = EL3 + EL4 + EL6 = 117.4518 + 530.1671 + 1047.161 MeV = 1694.78 MeV 

 

 

4.9.7.4.3 Cas 35 : Le niveau d’énergie Ehe35 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Ehe35 = EL3 + EL5 = 117.4518 + 582.3062 MeV = 699.76 MeV  
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4.9.7.4.3.1 Cas 355 : Le niveau d’énergie Ehe355 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe355 = EL3 + EL5 + EL5 = 117.4518 + 582.3062 + 582.3062 MeV = 1282.06 MeV 

     

 

4.9.7.5 Cas 4n : Le niveau d’énergie Ehe4n 

En prenant la combinaison ayant une énergie EL4 pour la première liaison, on a : 

Ehe4n =  EL4 = 530.1671 MeV 

La première liaison est L4n. Le premier proton est en côte à côte avec le premier neutron. 

 

4.9.7.5.1 Cas 44 : Le niveau d’énergie Ehe44 

En prenant la combinaison ayant une énergie EL4 pour le deuxième neutron, on a : 

 Ehe44 = EL4 + EL4 = 530.1671 + 530.1671 MeV = 1060.33 MeV  
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4.9.7.5.1.1 Cas 444 : Le niveau d’énergie Ehe444 

Le dernier neutron prend le niveau d’énergie EL4 : 

Ehe444 = EL4 + EL4 + EL4 = 530.1671 + 530.1671 + 530.1671 MeV = 1590.50 MeV 

 

4.9.7.5.1.2 Cas 445 : Le niveau d’énergie Ehe445 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe445 = EL4 + EL4 + EL5 = 530.1671 + 530.1671 + 582.3062 MeV = 1642.64 MeV 

         

4.9.7.5.1.3 Cas 446 : Le niveau d’énergie Ehe446 

Le dernier neutron prend le niveau d’énergie EL6 : 

Ehe446 = EL4 + EL4 + EL6 = 530.1671 + 530.1671 + 1047.161 MeV = 2107.50 MeV 

 

 

4.9.7.5.2 Cas 45 : Le niveau d’énergie Ehe44 

En prenant la combinaison ayant une énergie EL5 pour le deuxième neutron, on a : 

 Ehe45 = EL4 + EL5 = 530.1671 + 582.3062 MeV = 1112.47 MeV  
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4.9.7.5.2.1 Cas 455 : Le niveau d’énergie Ehe455 

Le dernier neutron prend le niveau d’énergie EL5 : 

Ehe455 = EL4 + EL5 + EL5 = 530.1671 + 582.3062 + 582.3062 MeV = 1694.78 MeV 

         

 

4.9.7.6 Conclusion 

Le bilan des niveaux d’énergie de liaison, sont résumés dans le tableau suivant : 

No Combinaison Energie de 

liaison 

Stabilité 

statique 

Stabilité 

dynamique 

Stabilité 

électrique 

Commentaire 

1 He000 -28.297 1000 1 10 Empilage taux + 

2 He001 -5.6914 100 10 10 basse énergie taux + 

2b He010 -5.6914 100 10 10 basse énergie taux + 

3 He002 46.448 100 60 10 basse énergie taux + 

4 He003 98.585 100 110 10 basse énergie taux + 

5 He013 121.19 10 130 0 basse énergie taux n0 

5b He022 121.19 10 130 0 basse énergie taux n0 

6 He023 173.33 10 180 20 basse énergie taux ++ 

7 He0330 216.04 100 230 60 Boucle très stable taux 

++++++ 

8 He033 225.47 10 230 50 basse énergie taux 

+++++ 

9 He133 248.08 1 250 20 basse énergie taux ++ 

9b He223 248.08 1 250 20 basse énergie taux ++ 

10 He233 300.22 1 300 40 basse énergie taux 

++++ 

11 He333 352.36 1 350 60 basse énergie taux 

++++++ 

12 He004 511.30 100 500 -20 mi énergie taux -- 
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No Combinaison Energie de 

liaison 

Stabilité 

statique 

Stabilité 

dynamique 

Stabilité 

électrique 

Commentaire 

13 He014 533.91 10 550 -40 mi énergie taux ---- 

14 He005 563.44 100 600 0 mi énergie taux n0 

15 He015 586.05 10 600 -20 mi énergie taux -- 

15b He024 586.05 10 600 -20 mi énergie taux -- 

16 He0250 628.75 100 650 0 Boucle taux n0 

17 He025 638.19 10 650 0 mi énergie taux n0 

17b He034 638.19 10 650 0 mi énergie taux n0 

18 He134 660.79 1 650 -20 mi énergie taux -- 

18b He224 660.79 1 650 -20 mi énergie taux -- 

19 He035 690.33 10 700 20 mi énergie taux ++ 

20 He135 712.93 1 700 0 mi énergie taux n0 

20b He225 712.93 1 700 0 mi énergie taux n0 

20c He234 712.93 1 700 0 mi énergie taux n0 

21 He235 765.07 1 750 20 mi énergie taux ++ 

21b He334 765.07 1 750 20 mi énergie taux ++ 

22 He335 817.21 1 800 40 mi énergie taux ++++ 

23 He060 1028.29 10 1000 -40 mi énergie taux ---- 

24 He0160 1041.47 100 1000 -40 Boucle taux ---- 

24b He0440 1041.47 100 1000 -40 Boucle taux ---- 

25 He044 1050.90 10 1000 -40 haute énergie tau  

------ 

26 He144 1073.51 1 1000 -60 haute énergie taux  

------ 

27 He045 1103.04 10 1100 -20 haute énergie taux -- 

27b He062 1103.04 10 1100 -20 haute énergie taux -- 

28 He145 1125.65 1 1100 -40 haute énergie taux ---- 

28b He244 1125.65 1 1100 -40 haute énergie taux ---- 

29 He055 1155.18 10 1100 0 haute énergie taux n0 

29b He063 1155.18 10 1100 0 haute énergie taux n0 

30 He136 1177.79 1 1100 -40 haute énergie taux ---- 

30b He226 1177.79 1 1100 -20 haute énergie taux -- 

30c He155 1177.79 1 1100 -20 haute énergie taux -- 

30d He245 1177.79 1 1100 -20 haute énergie taux -- 

30e He344 1177.79 1 1100 -20 haute énergie taux -- 

31 He236 1229.93 1 1200 0 haute énergie taux n0 

31b He255 1229.93 1 1200 0 haute énergie taux n0 

31c He345 1229.93 1 1200 0 haute énergie taux n0 

32 He336 1282.06 1 1200 20 haute énergie taux ++ 

32b He355 1282.06 1 1200 20 haute énergie taux ++ 

33 He064 1567.90 10 1500 -40 haute énergie taux ---- 

34 He146 1590.50 1 1500 -60 haute énergie taux  

------ 

34b He444 1590.50 1 1500 -60 haute énergie taux  

------ 

35 He246 1642.64 1 1600 -40 haute énergie taux ---- 

35b He445 1642.64 1 1600 -40 haute énergie taux ---- 

36 He346 1694.78 1 1600 -40 haute énergie taux ---- 

36b He455 1694.78 1 1600 -20 haute énergie taux -- 
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No Combinaison Energie de 

liaison 

Stabilité 

statique 

Stabilité 

dynamique 

Stabilité 

électrique 

Commentaire 

37 He446 2107.50 1 2100 -60 haute énergie taux ----

-- 

 

On voit un grand nombre de possibilités de relier ces 4 nucléons. On remarque la configuration 

bouclée suivante :  

ℎ𝑒0330 =  [
𝑃 − 𝑁
𝑁 − 𝑃

] 

Les 2 liaisons neutron-proton empilées ont l’énergie EL0. Les 2 liaisons neutron-proton radiales ont 

l’énergie EL3. On a les énergies de liaison : 

Ehe0330 = 2*EL3 + 2* EL0 = 231.38 MeV 

Cette énergie correspond à un niveau bas. Cette configuration se forme lors d’un refroidissement 

dans un environnement à basse température. 

 

4.9.8 Modélisation du noyau de lithium 6 
Le noyau de lithium 6 est composé de 3 protons et de 3 neutrons. Quelle est la position relative entre 

ces 6 nucléons ? 

Pour décrire les configurations possibles, on part de la description de l’hélium, pour chacun de ses 

cas, un proton et un neutron seront rajoutés. Le nombre de combinaisons devient tout de suite 

élevé. Ici, seul le cas où l’énergie de liaison la plus basse sera étudié. 

4.9.8.1 Cas 0000n : Le niveau d’énergie Eli0000n 

En prenant la combinaison ayant une énergie la plus basse correspondante à la première 

configuration d’hélium, on a : 

Eli000n = -21. 330 050 514 MeV 

Les 6 nucléons sont empilés selon leurs axes de symétries de la façon suivante : 

• N-P-N-P-N-P 

Eli00000 = Eli000n + Eli0n + Eli0n = -31. 995 075 771 MeV 
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Les énergies de liaison sont calculables de la même façon que pour l’hélium. 

Les coordonnées des points D, D’, D’’, D’3, J, J’, J’’, J’3, A, A’, A’’, A’3, G, G’, G’’ et G’3 dans le repère 

global sont : 

𝑂𝐷⃗⃗⃗⃗⃗⃗ = 2 ∙ 𝑂𝑂2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
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𝐷(𝑥, 𝑦, 𝑧) = 2𝑂2 (−
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐷 (−√3

𝑟

√3
, 0, −

𝑟

√3
) = 𝐷(−𝑟, 0, −

𝑟

√3
) 

𝐷′(𝑥, 𝑦, 𝑧) = 𝐷′(−𝑟,−2𝑟,−
𝑟

√3
) 

𝐷′′(𝑥, 𝑦, 𝑧) = 𝐷′′(−𝑟,−4𝑟,−
𝑟

√3
) 

𝐷′3(𝑥, 𝑦, 𝑧) = 𝐷′3(−𝑟,−6𝑟,−
𝑟

√3
) 

 

𝐴(𝑥, 𝑦, 𝑧) = 2𝑂3 (
√3

2
𝑧0, 0, −

1

2
𝑧0) = 𝐴 (√3

𝑟

√3
, 0,−

𝑟

√3
) = 𝐴(𝑟, 0,−

𝑟

√3
) 

𝐴′(𝑥, 𝑦, 𝑧) = 𝐴′(𝑟, −2𝑟,−
𝑟

√3
) 

𝐴′′(𝑥, 𝑦, 𝑧) = 𝐴′′(𝑟, −4𝑟,−
𝑟

√3
) 

𝐴′3(𝑥, 𝑦, 𝑧) = 𝐴′3(𝑟, −6𝑟,−
𝑟

√3
) 

 

 

𝐽(𝑥, 𝑦, 𝑧) = 2𝑂1(0,0, 𝑧0) = 𝐽 (0,0,2
𝑟

√3
) = 𝐽(0,0,

2𝑟

√3
) 

𝐽′(𝑥, 𝑦, 𝑧) = 𝐽′(0,−2𝑟,
2𝑟

√3
) 

𝐽′′(𝑥, 𝑦, 𝑧) = 𝐽′′(0, −4𝑟,
2𝑟

√3
) 

𝐽′3(𝑥, 𝑦, 𝑧) = 𝐽′3(0, −6𝑟,
2𝑟

√3
) 

 

 

𝐺(𝑥, 𝑦, 𝑧) = 𝐺(0,0,0) 

𝐺′(𝑥, 𝑦, 𝑧) = 𝐺′(0,−2𝑟, 0) 

𝐺′′(𝑥, 𝑦, 𝑧) = 𝐺′′(0,−4𝑟, 0) 

𝐺′3(𝑥, 𝑦, 𝑧) = 𝐺′3(0,−6𝑟, 0) 
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Déterminer les énergies potentielles entre les couples de charges électriques du premier neutron et 

le proton : 

𝐸 = 𝐸𝐴
𝐴′ + 𝐸𝐷

𝐷′ + 𝐸𝐽
𝐽′
+ 𝐸𝐷

𝐽′
+ 𝐸𝐽

𝐷′ + 𝐸𝐺
𝐴′ − 𝐸𝐴

𝐷′ − 𝐸𝐴
𝐽′
− 𝐸𝐷

𝐴′ − 𝐸𝐽
𝐴′ − 𝐸𝐺

𝐷′ − 𝐸𝐺
𝐽′

 

𝐸𝑥
𝑦′
= 𝑘𝑒

中
𝑥
∙中

𝑦′

中
𝑟𝑒𝑓

2 ⋅
𝑒2

𝑑𝑥
𝑦′
= 𝑘𝑒 ⋅

(中
𝑟𝑒𝑓
+ α𝐸 ∙中𝛿𝑦′5

)
2
𝑒2

中
𝑟𝑒𝑓

2
∙ 𝑑𝑥
𝑦′

 

Les termes en plus sont définis comme suit : 

• αE : le coefficient de proportionnalité de la charge neutre affectant lithium. 

• 中 δy’5 : la charge neutre de lithium sans les électrinettes statiques. 

 

𝐸 =
𝑘𝑒 ∙ 𝑒

2

4𝑟
∙ [6 − 2√2 − √3]

(中
𝑟𝑒𝑓
+ α𝐸 ∙中𝛿𝑦′5

)
2

中
𝑟𝑒𝑓

2  

Ici,  

E = Eli00000 /5 = -6.399 015 154 MeV = -10.252 3741*10-13 J. 

On en déduit la valeur de αE : 

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

= (中
𝑟𝑒𝑓
+ α𝐸 ∙中𝛿𝑦′5

)
2

 

α𝐸 ∙中𝛿𝑦′5
= √

𝐸 ∙中
𝑟𝑒𝑓

2
∙ 4𝑟

𝑘𝑒 ∙ 𝑒
2 ∙ [6 − 2√2 − √3]

− (中
𝑟𝑒𝑓
) 

On a : 

中
𝛿𝑦′5

= 18(中
𝐹
+中

𝐹
+中

𝐻
) + 18(中

𝐻
+中

𝐻
+中

𝐹
) = 4469.464818 ∙ 10−31 𝑘𝑔 

中
𝑟𝑒𝑓

= 9.1 ∙ 10−31 

 

α𝐸中𝛿𝑦′5
= √

10.2523741 ∙ 10−13 ∙ 82.81 ∙ 10−62 ∙ 4 ∙ 0.36373 ∙ 10−15

8.987552 ∙ 1.6021772 ∙ 10−29 ∙ [6 − 2√2 − √3]
− 9.1 ∙ 10−31 

α𝐸中𝛿𝑦′5
= √

37.193377188 ∙ 10−61

1.0
− 9.1 ∙ 10−31 

α𝐸中𝛿𝐸
= 19.285 584 562 ∙ 10−31 − 9.1 ∙ 10−31 

α𝐸 ∙ 4469.464818 ∙ 10
−31 = 10.185 584 562 037 ∙ 10−31 

α𝐶 = 0.002 278 927 
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4.9.9 Interprétation de la courbe d’Aston  
La courbe d'Aston est une courbe représentant l'énergie de liaison par nucléon des noyaux 

atomiques, en fonction de leur nombre de masse. 

 

La configuration géométrique des quarks au sein des protons et des neutrons permet d’expliquer 

facilement cette courbe. 

Si les noyaux atomiques ne contiennent que des liaisons à énergie négative (axiales ou radiales), 

cette courbe serait strictement croissante. En effet, la densité volumique de l’énergie augmente au 

départ, puis sature rapidement au fur et à mesure de la construction. 

Le crochet entre He4 et Li6 s’explique par une augmentation de volume plus grande que la variation 

de l’énergie. 

L’abaissement de la courbe après le Fe56 s’explique par l’apparition de liaisons à énergie positive 

(radiales dynamiques). La somme des énergies de liaison augmente moins vite quand le nombre de 

nucléons augmente. Ce qui fait baisser la moyenne. 

 

 

4.9.10 Modélisation des fusions 
Ce paragraphe décrit les conditions de fusion des nucléons et les énergies mises en jeu. La légende 

suivante sera utilisée : 

• Proton :  

• Neutron :  
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4.9.10.1 Les conditions nécessaires de fusion entre un proton et un neutron 

Pour qu’une fusion entre 1 proton et 1 neutron puisse avoir lieu, il est impératif de respecter les 

conditions suivantes : 

1. Si la fusion s’effectue par une liaison axiale, alors l’énergie est négative. Cette liaison est 

basée sur les 3 paires d’électrinettes séparées d’une distance constante. La valeur absolue de 

cette liaison est la plus faible. La condition est que les axes de ces 2 nucléons soient sur la 

même droite. 

2. Si la fusion s’effectue par une liaison radiale, alors les 4 paires d’électrinettes entrant en 

contact du nucléon O1 doivent être en synchronisation avec les 4 paires d’électrinettes 

entrant en contact du nucléon O2. Les nucléons O1 et O2 doivent se mettre en position face 

à face. 

3. Les 2 nucléons doivent se rapprocher jusqu’à entrer en contact. Dans le cas d’une liaison 

axiale, le rapprochement peut s’effectuer automatiquement. Dans le cas d’une liaison 

radiale, une pression est nécessaire pour compenser la force électrique générée par deux 

charges électriques de même signe, sauf le cas 3 du deutérium. 

 

4.9.10.2 Les conditions nécessaires de fusion entre 2 protons 

Pour qu’une fusion entre 2 protons puisse avoir lieu, il est impératif de respecter les conditions 

suivantes : 

1. La fusion ne peut s’effectuer que par une liaison radiale. 

2. Les 2 protons doivent se rapprocher jusqu’à entrer en contact. Une pression est nécessaire 

pour compenser la force générée par deux charges électriques de même signe. 

 

4.9.10.3 Les conditions nécessaires de fusion entre 2 neutrons 

Pour qu’une fusion entre 2 neutrons puisse avoir lieu, il est impératif de respecter les conditions 

suivantes : 

1. La fusion ne peut s’effectuer que par une liaison radiale. 

2. Les 2 neutrons doivent se rapprocher jusqu’à entrer en contact. Une pression est nécessaire 

pour compenser la force générée par deux charges électriques de même signe. Il y a une 

exception : 

 

Dans ce cas précis, la force d’expulsion est inférieure à celle d’attraction. La pression n’est 

pas nécessaire pour entrer en contact. 
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4.9.10.4 Les conditions nécessaires de fusion entre 2 noyaux atomiques 

Ici, les noyaux atomiques ont au moins 2 nucléons. Généralement, les 2 premiers nucléons sont 

proton-neutron. Pour qu’une fusion entre 2 noyaux atomiques puisse avoir lieu, il est impératif de 

respecter les conditions suivantes : 

1. Si la liaison est axiale, alors la section de liaison doit être en accord avec les 2 noyaux. Il y a 

donc un nombre positif de liaisons L0. 

2. Si la liaison est radiale, alors la coupe de liaison doit comporter un nombre suffisant de 

doubles liaisons à énergie négative LL0. 

3. Les nucléons en liaison doivent se mettre en bonne position face à face. 

4. Dans le cas de la liaison radiale, il y a une deuxième possibilité. L’énergie de liaison est 

positive. Ce sont des liaisons entre les électrinettes liées. Elles sont dynamiques. Tandis que 

la liaison axiale et la liaison radiale à énergie négative sont statiques. 

5. Dans ce dernier cas, les électrinettes en liaison doivent être synchronisées par rapport aux 

points de contact. 

6. Le problème de l’énergie de liaison : dans le cas de l’énergie positive, le résultat de la fusion 

reste immobile. Dans le cas de l’énergie négative, l’énergie de liaison émise se convertit en 

énergie cinétique. Selon la loi de conservation des moments cinétiques, le moment cinétique 

final doit être égal au moment cinétique initial. Dans le cas du moment initial nul, le moment 

final doit être nul. Cela conduit à la séparation des 2 noyaux dans 2 sens opposés. C’est la 

raison pour laquelle on préfère choisir une fusion qui donne au moins deux particules qui 

facilitent la conservation du moment cinétique. 

 

En pratique, les 2 premières conditions ne sont pas si simples qu’elles y paraissent. En effet, les 

noyaux à fusionner portent une charge électrique globale positive. Donc à une distance supérieure 

au rayon r des charginettes, les noyaux se repoussent. Donc, il faut une pression suffisante pour les 

rapprocher. 

Le problème est que la force électrique est proportionnelle à la densité d’énergie volumique. Donc, 

l’augmentation de la pression entrainera l’augmentation de la densité d’énergie. Ce qui conduit à 

l’augmentation de la force répulsive. Donc, il y a une sorte de régulation naturelle de la vitesse de 

fusion. 

Par le même raisonnement, l’augmentation de la température a le même effet que celle de la 

pression. 

La dernière condition de synchronisation est la plus difficile. En effet, si les nucléons sont construits 

au fil du temps, ils ne sont pas tous en phase. Il faut un très grand nombre de nucléons pour obtenir 

un petit nombre de nucléons synchronisables. 

Si on prend le diamètre de l’électron, au mieux (car certains estimes que de tend vers 0), à la valeur 

suivante : 

de = 10-22 m  

La circonférence d’une charginette est : 

lc = π*2*r = π*2*0.36373 = 2.285382992*10-15 m. 
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Le nombre de position sur la trajectoire d’une charginette : 

Np = lc /de = 2.285 * 107. 

Il faut en moyenne Np + 1 noyaux pour avoir 2 noyaux synchronisables. Il faut donc Np rencontres 

différentes pour croiser un noyau synchronisable. 

La troisième condition est moins sévère que la dernière. Mais il faut quand même du temps pour 

qu’ils puissent tomber face à face naturellement, même sous pression. En effet, la rotation des 

charginettes se rend neutre à une distance au-dessus de leur rayon. Auto positionnement n’est pas 

possible. 

Dans le cas général d’une liaison à énergie négative, la nouvelle liaison libère de l’énergie. Il s’agit 

d’une énergie potentielle. Cette énergie ne reste pas dans l’espace au sein du champ d’énergie. Elle 

sera convertie en énergie cinétique au nouveau noyau atomique. 

Dans le cas général d’une fusion à énergie positive, il faut fournir les énergies des nouvelles liaisons. 

Il s’agit d’une énergie potentielle. Cette énergie reste dans l’espace au sein du champ d’énergie.  

 

4.9.10.5 Les conditions nécessaires de fusion entre 1 noyau atomique et 1 neutron 

Ici, le noyau atomique a au moins 2 nucléons. Généralement, les 2 premiers nucléons sont proton-

neutron. Pour qu’une fusion entre 1 noyau atomique et un neutron puisse avoir lieu, il est impératif 

de respecter les conditions suivantes : 

1. Si la liaison est axiale, alors le neutron doit trouver 1 proton du noyau pour se positionner sur 

son axe. Cela suppose que le noyau possède au moins un proton ayant une place axiale libre. 

2. Si la liaison est radiale, alors le neutron tout seul ne peut qu’avoir une liaison dynamique, 

donc à énergie positive. 

L’uranium possède un isotrope 235 avec 143 neutrons et 92 protons. Le nombre de neutron est 

presque le double du nombre de proton. Il y a donc un certain nombre de neutron avec leurs liaisons 

dynamiques. Comme ces liaisons dynamiques sont moins stables par rapport aux liaisons statiques, la 

radioactivité trouve son explication. 

 

4.9.10.6 Exemple de fusion entre Deutérium et Tritium 

Dans la fusion d’un deutérium et d’un tritium donnant un noyau d’hélium 4 et un neutron, l’équation 

est la suivante : 

D + T = He4 + n0 

4.9.10.6.1 Déroulement de la fusion 

Dans le cas du laboratoire, les cas d’entrée et de sortie sont les suivants : 

1. Etape 1 : le deutérium Ede0 et le tritium Etr00 se positionnent en parallèle par l’agitation 

thermique à haute température ou par la haute pression. 
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2. Etape 2 : le deutérium Ede0 se combine avec le tritium Etr00 sous l’effet de la haute pression et 

l’agitation thermique qui compensent la force électrique. 

 

3. Etape 3 : la combinaison la plus compacte à réaliser est la liaison radiale du deutérium et du 

tritium en hélium 5 : Ehe000LL0. 

 

4. Etape 4 : la conservation des quantités de mouvement rend l’hélium 5 instable et libère le 

neutron du niveau d’énergie EL0. 
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5. étape 5 : comme le tritium coûte cher, il faut profiter du neutron libéré pour obtenir un tritium. 

 

Cette dernière étape 5 exige qu’en entrée, il faut mettre plus de deutériums. Les tritiums de départ 

jouent un rôle de catalyseur. Ensuite, la fusion auto génère des tritiums. 

Remarque : 

Cette dernière étape 5 produit une seule particule. La conservation des quantités de 

mouvement peut rendre les chocs colinéaires instables si le deutérium et le neutron se 

déplaçaient dans 2 directions opposées. Le rebondissement est possible et probable. 

La fusion entre 2 deutériums sans passer par un tritium est également possible. La 

probabilité est moins grande que le cas tritium + deutérium pour la même raison que ci-

dessus qui a pour résultat une seule particule. 

 

4.9.10.6.2 Energie mise en jeu 

Le deutérium initial a une configuration Ede0. Ce deutérium combine avec un tritium de configuration 

Etr00 pour donner un hélium 5. Le bilan des masses est le suivant : 

ΔM1 = Mhe5 - Mde – Mtr  
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ΔM1 = 5.01222u - 2.014102u - 3.016049u = -0.017931u = -16.702 619 MeV 

L’hélium 5 devient un hélium 4 en perdant un neutron. Le bilan des masses est le suivant : 

ΔM2 = Mhe4 + Mn – Mhe5  

ΔM2 = 4.002603u + 1.008666u - 5.01222u = -0.000 951u = -0.885 851 MeV 

Le bilan énergétique est : 

𝐸 = 𝛥𝑀1 − 𝛥𝑀2 = −16.702 619 𝑀𝑒𝑉 + 0.885 851 𝑀𝑒𝑉 = −15.816 769 𝑀𝑒𝑉 

 

4.9.10.6.3 Conditions favorisant la fusion 

Solution : 

Pour que la fusion entre deutérium et tritium puisse avoir lieu, il faut réaliser deux 

opérations : éloigner l’électron de chacun d’eux et rapprocher les 2 noyaux. 

La première opération peut être réalisée par élévation de la température, tandis que la 

deuxième peut être réalisée par élévation de la pression. Le problème est qu’il est difficile de 

réaliser la très haute température et la très haute pression en même temps. Le seul cas 

connu de cette réalisation est la bombe H. L’inconvénient de cette méthode est qu’elle ne 

permet pas de fournir de manière contrôlée l’énergie de la fusion. 

Il faut donc trouver une autre façon de libérer rapidement une grande quantité d’énergie. La 

plus puissante source d’énergie (la bombe H, par exemple) connue à ce jour est d’origine 

nucléaire. Selon le présent modèle, cette énergie provient de liaison électron-positron. Ce 

qui conduit à utiliser deux électrodes de très haute tension (méthode proche du mode 

bombe H), pour libérer une très grande quantité d’énergie par neutralisation des charges 

électriques. Si la quantité d’énergie est suffisante, les 2 conditions haute température et 

haute pression seront réalisées pendant la décharge électrique qui dure généralement un 

temps très court (1 à 10 ms). 

Cette fusion pendant une durée courte et très localisée bénéficie d’une faveur 

électromagnétique. Le présent modèle indique que la force électrique est proportionnelle à 

la densité volumique d’énergie. Mais la rapidité de l’augmentation de l’énergie rend cette 

proportionnalité inopérante pendant une courte durée au début de cette augmentation. 

C’est un retard inhérent de l’électromagnétisme, comme la rémanence magnétique. Ce qui 

permet de rapprocher les noyaux atomiques avec une force répulsive correspondant à 

l’ancienne densité d’énergie. Cela favorise la fusion. 

Par contre, le mécanisme de Tokamak ne bénéficie pas de cette faveur. En effet, le plasma 

dans un Tokamak est obtenu par chauffage progressif. Ce qui augmente au fur et à mesure la 

force électrique en diminuant la probabilité de fusion des noyaux. 

Avec le mode bombe H, le taux maximal de fusion pendant une décharge électrique se 

calcule en tenant compte des caractéristiques suivantes : 

1. Le deutérium et le tritium ont chacun 5 facettes : deux axiales, 3 radiales 

2. Pour chaque noyau, la probabilité d’obtenir une facette fusionnable est : 
3

5
. En effet, 

seules les 3 facettes radiales sont fusionnables. 
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3. Pour chaque facette fusionnable, la probabilité de tomber sur la bonne facette de 

l’autre noyau est : 
1

5
 dans le cas de la facette unique (2 électrinettes de même signe) 

ou bien : 
1

5
 dans le cas de la facette double (2 électrinettes de signes différents). 

4. La probabilité globale est : 𝜏 =
3

5
∙ (
1

3
∙
1

5
+
1

3
∙
1

5
+
1

3
∙
1

5
) =

3

5
∙ (

3

15
) =

3

25
 

5. Si le temps d’une fusion est inférieur à la durée d’une décharge et à la durée de 

rémanence magnétique, ce taux peut être plus grand qu’un dixième. 

Ce calcul tient compte de l’hypothèse suivante : 

Sous la haute pression, les 2 noyaux ont le temps de se réajuster pour fusionner lors 

que les 2 faces sont bonnes grâce à la force d’attraction. 

Ceci n’est pas valable si la pression est faible. En effet, si les électrinettes ne sont pas 

suffisamment en face, les noyaux vont se rebondir. 

Pour augmenter la probabilité de fusion, il est possible d’envisager d’influencer 

l’orientation des noyaux en utilisant leur moment électrique et leur moment 

magnétique. 

Il n’est pas possible de compter sur une condition cumulant la haute température, la haute 

pression et la continuité des 2 premières grandeurs. En effet, un récipient supportant 100 

millions de degrés et 10 mille bars est difficile à réaliser. En plus, un milieu stabilisé diminue 

le taux de fusion. Donc, il faut utiliser un système qui décharge cycliquement, un peu comme 

un cylindre à 4 temps d’un moteur à essence. Le récipient est refroidi par un système de 

refroidissement. Ainsi la température moyenne du récipient est bien plus basse que la 

température de fusion. 

 

4.9.10.7 Un autre exemple entre un proton et un noyau de bore 

La fusion d’un proton et d’un noyau de bore : 

• 𝑃1
1 + 𝐵5

11 = 𝐶6
12 = 𝐻𝑒2

4 + 𝐻𝑒2
4 + 𝐻𝑒2

4 + 8.7𝑀𝑒𝑉 

4.9.10.7.1 Déroulement de la fusion 

La structure du noyau Bore peut être représentée par le schéma suivant : 
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La fusion du noyau Bore avec un proton donne un noyau carbone dont la structure est la suivante : 

 

L’énergie cinétique issue de la fusion sépare le carbone d’abord en 1 hélium et 1 béryllium : 
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L’énergie cinétique continue de séparer le béryllium en 2 héliums : 

 

4.9.10.7.2 Energie mise en jeu 

La masse de Bore 11 est : 

ΔM1 = 11,0093054u = 10255, 102 232 528 MeV 

La somme de la masse du proton et du Bore : 

ΔM2 = MP + MB  

ΔM2 = 1,007 276 u + 11,0093054u = 11193. 374 532 528 MeV 

La somme des 3 héliums : 

ΔM3 = 3Mhe4  

ΔM3 = 3* 4,002 602 u = 11185. 199 577 MeV 

Le bilan énergétique est : 

𝐸 = 𝛥𝑀2 − 𝛥𝑀3 = 11193. 374 532 528 𝑀𝑒𝑉 − 11185. 199 577 𝑀𝑒𝑉 = 8.175 𝑀𝑒𝑉 
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4.9.10.7.3 Conditions favorisant la fusion 

Solution : 

Le noyau du bore a 5 charges positives. La force de répulsion est bien plus grande que celle 

d’un noyau de tritium. 

La pression à mettre en œuvre est plus grande que pour le deutérium et le tritium. 

L’avantage de cette fusion est qu’il n’y a pas de neutrons libérés. L’énergie libérée se trouve 

sous forme cinétique. 

La façon la plus directe de récupérer cette énergie est d’utiliser le principe du moteur à 

pistons. 

 

4.9.10.8 Conclusions 

 

Le présent modèle peut expliquer pourquoi une étoile a une durée de vie aussi longue : 

La durée de vie d’une étoile est environ 10 milliards d’années en fonction de sa réserve de 

combustibles. Cette longévité est également due à l’auto régulation des fusions qui prend du 

temps à réaliser. 

Contrainte : 

Le présent modèle révèle un aspect important. En effet, les projets de réalisation de 

centrales nucléaires à fusion doivent tenir compte de cette contrainte d’auto régulation des 

fusions. Sinon, des échecs seront rencontrés. 

Vérification avec les résultats expérimentaux : 

Les réalisations actuelles des fusions nucléaires montrent que le rendement du mode inertiel 

(mode bombe H) est 1.53 ; Tandis que le mode Tokamak est 0.64 ; Ce qui est cohérent avec la 

description des conditions favorisant la fusion. 

Axes d’amélioration du taux de fusion : 

Comme les noyaux sont chargés électriquement, il est donc possible d’influencer leur 

orientation à l’aide d’un champ électromagnétique. Si par exemple, les axes de symétrie des 

noyaux étaient tous parallèles, alors cela augmenterait le taux de fusion. 

 

4.9.11 Modélisation des fissions 
Ce paragraphe décrit les conditions de fission des nucléons et les énergies mises en jeu. 

4.9.11.1 Conditions de fission des nucléons 

La structure d’un noyau atomique composé d’un grand nombre de nucléons peut ne pas être très 

stable. Cela se produit quand il y a des liaisons dynamiques. 

Un neutron peut par sa relative neutralité pénétrer dans l’atome. Si ce neutron possède une énergie 

supérieure à la barrière de fission qui vaut 5.7 MeV, le noyau de l’atome peut se briser en plusieurs 
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noyaux de plus petites tailles. Une fission libère des neutrons de plus grande énergie qui déclenche 

ainsi une réaction en chaine. 

 

4.9.11.2 Exemple de fission et d’énergie mise en jeu 

La fission de l’uranium 𝑈92
235 peut être décrite par l’équation est la suivante : 

𝑈92
235  +  𝑛0

1  =  𝐾𝑟36
92 + 𝐵𝑎56

141 +  3 𝑛0
1 + 𝐸∆ 

 

4.9.11.2.1 Structure géométrique idéale 

La structure idéale d’un noyau atomique est un réseau homogène avec proton et neutron alternés 

sur les 3 dimensions. Par exemple : 92 protons + 96 neutrons = 𝑈92
188 un isotope de l’uranium. 
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L’uranium 188 ainsi obtenu est très stable. 

4.9.11.2.2 Placement des neutrons restants 

Après avoir placé les 92 protons + 96 neutrons selon la structure idéale d’un noyau atomique, il 

reste : 235 - 92 protons - 96 neutrons = 47 neutrons. 

Il reste 12 places de protons en bas du nucléon + 8 places de protons en haut du nucléon. Il restera 

27 neutrons à placer. Mais il n’y a plus de places pour établir une liaison axiale. Il n’est pas possible 

d’établir des liaisons radiales à énergie négative car les neutrons sont seuls. Il ne reste plus que la 

possibilité d’établir des liaisons radiales à énergie positive. Chaque étage possède 12 places 

possibles. 7 étages donnent 84 places possibles sans compter le dernier étage. Il suffit de placer les 

27 neutrons restants. 

 

4.9.11.2.3 Structure géométrique fragile 

La structure d’un noyau atomique possède un grand nombre de possibilités, quasiment infini. Parmi 

eux, il faut trouver celles qui sont fragile. 

Une possibilité est à la place de certains protons, un neutron s’y trouve. Cette configuration coupe la 

liaison axiale. Ce qui fragilise la stabilité axiale. 

Avec un noyau de 10 étages, il faut 5 neutrons de plus par étage, donc 5 protons de moins. Ce qui 

donne 15 neutrons + 9 protons par étage, sauf les 2 derniers étages qui compte 10 protons + 12 (ou 

11) neutrons. Le schéma suivant montre 2 étages consécutifs : 
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Chaque étage comporte 3 liaisons radiales à énergie positive, illustrées par les 3 traits verts. Ces 3 

liaisons constituent 3 points fragiles de l’étage. Les neutrons remplaçants de protons constituent 

également les points de fragilité inter étage. 

Il existe un très grand nombre (quasi infini) de possibilités de remplacement de proton par neutron 

dans le noyau atomique. Ces remplacements constituent les points de scission lors d’une fission. Une 

fission peut passer par un ou plusieurs points de scission. 

L’énergie libérée lors d’une fission est égale à la somme des énergies de liaisons cassées. Elle est 

égale à la somme des énergies radiales à énergie positive moins celles des énergies de liaisons 

radiales à énergie négative. 

 

4.9.12 Modélisation des radioactivités β 
Ce paragraphe décrit les conditions de radioactivités β+, β- et les énergies mises en jeu. Dans la suite, 

l’origine de la chrominette Up est l’environnement qui contient un océan de particules neutres dont 

des chrominettes Up et Down.  

Que se passe-t-il si cette chrominette n’est pas synchronisée avec le noyau atomique ? Dans ce cas, 

lors du remplacement du quark en place, le proton ou le neutron va se désintégrer. Ainsi, il va libérer 

des quarks synchronisés avec les autres nucléons de cet atome. 

4.9.12.1 La radioactivité β- 

Le modèle standard considère qu’un neutron devient un proton avec l’aide la force électro faible : 

Neutron + énergie ==>> proton + électron + antineutrino 

Le présent modèle considère qu’une chrominette up pénètre dans le cœur du neutron en remplaçant 

une des 2 quarks down du neutron. Au passage, le positron du cœur est capturé par cette 

chrominette Up. 

Neutron + chrominette U ==>> proton + chrominette D + électron 

 

 

 

Le quark Down détaché libère l’électron en son sein pour devenir une chrominette D. 

La condition est que cette chrominette U soit issue du même noyau atomique. C’est la condition de 

synchronisation entre les charginettes. 
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4.9.12.2 La radioactivité β+ 

Le modèle standard considère qu’un proton devient un neutron avec l’aide la force électro faible : 

Proton + énergie ==>> neutron + positron + neutrino 

Le présent modèle considère qu’une chrominette down énergétique après avoir capturé un électron 

(un quark Down), pénètre dans le cœur du proton en remplaçant une des 2 quarks up du proton. 

Proton + chrominette D + électron ==>> neutron + chrominette U 

 

Le quark Up détaché libère le positron en son sein qui est capturé par le cœur pendant le 

remplacement du quark Up par le quark Down. 

La condition est que cette chrominette D soit issue du même noyau atomique. C’est la condition de 

synchronisation entre les charginettes. 

 

4.10 Modélisation de grandes structures à base de nucléons 
L’examen de la structure du proton et celle du neutron permet de déduire l’existence de leurs 

structures symétriques schématisées comme suit : 

       

Figure 44 - Nucléons symétriques 

Le présent modèle prévoit l’existence du proton down la particule symétrique du proton qui est un 

proton up. De même il prévoit l’existence du neutron up la particule symétrique du neutron qui est 

un neutron down. 

Pour les mêmes raisons que celles du proton up, le proton down est stable. Par contre, la stabilité du 

neutron up est moins certaine. La raison de non observation de ces 2 nucléons symétriques dans la 

nature n’est pas connue à ce jour. 

 

4.10.1 Modélisation de structures à base de neutrons 
Il est possible de construire des structures avec uniquement des neutrons up et down. Il faut faire 

attention au fait que le neutron symétrique n’est pas l’anti neutron. Au sens neutralisation, l’anti 

neutron est le neutron lui-même, mais avec les charges électriques libres (= célibataires = sans la 

charge de signe opposé pour former une charginette) de signes opposés. Cela vient de la définition 
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de l’anti quark. Un anti quark d’un quark Q est le quark Q lui-même, mais avec une charge électrique 

de signe opposé. 

4.10.1.1 Neutronette 

Le composé le plus simple est un neutron up + un neutron down. 

 

Figure 45 - Structure d’une neutronette 

Les 2 électrons et 2 positrons du neutron up sont face à face avec les 2 positrons et 2 électrons du 

neutron down. Les axes de symétrie des 2 neutrons sont dans le même sens et confondus. Cette 

structure est encore plus stable que le deutérium. Elle sera nommée neutronette. 

 

4.10.1.2 Neutron triple 

Le composé suivant est un neutron up + 2 neutrons down ou un neutron down + 2 neutrons up. 

     

Figure 46 - Neutron triple 

Les axes de symétrie des 3 neutrons sont dans le même sens et confondus. Cette structure est 

encore plus stable que le tritium. Elle sera nommée neutron triple. 
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4.10.1.3 Neutronette double 

Deux neutronettes peuvent se mettre en parallèle et devenir la structure suivante : 

 

Figure 47 - Neutronette double 

Les axes de symétrie des 2 neutronettes sont dans 2 sens opposés. Cette structure est encore plus 

stable que l’hélium. Elle sera nommée neutronette double. 

4.10.1.4 Structure complexe à base de neutron 

Il est possible de généraliser la structure de la neutronette double en une structure complexe : 
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Figure 48 - Grande Structure à neutronettes 

Les axes de symétrie des neutrons sont tous parallèles. Mais leurs sens s’opposent pour former des 

neutronettes. Cette structure peut s’étendre indéfiniment. Elle est très stable car toutes les liaisons 

inter neutrons sont statiques à énergie négatives. Elle sera nommée structure à neutronettes. 

Une structure à neutronettes possède les propriétés suivantes : 

• La densité est très élevée, au moins 100 000 fois plus que la matière ordinaire. 

• La rigidité est très élevée, au moins 100 000 fois plus que le diamant. 

• La température de fusion est très élevée, au moins 250 millions de degrés. 

• Elle doit réfléchir la lumière un peu comme un miroir. 

• Elle est isolante électriquement. 

• Elle est isolante thermiquement. 

• Etc.  

Les applications de cette matière seraient extraordinaires. Par exemple :  

• Blindage extrêmement résistant, pour tanks, navires de guerre, etc. 

• Coque de sous-marin résistante à la très haute pression,  

• Moteur d’avion résistant à la très haute température,  

• Coque de vaisseaux spatiaux résistant à la très haute température, 

• Coque de navire résistante à la corrosion,  

• Mur de protection résistant à la radiation nucléaire,  

• etc. 
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4.10.2 Modélisation de structures à base de protons 
Il est possible de construire des structures avec uniquement des protons up et down. 

4.10.2.1 Protonette 

Le composé le plus simple est un proton up + un proton down. 

 

Figure 49 - Structure d’une protonette 

L’électron et 2 positrons du proton up sont face à face avec le positron et 2 électrons du proton 

down. Les axes de symétrie des 2 protons sont dans le même sens et confondus. Cette structure est 

encore plus stable que le deutérium. Elle sera nommée protonette. 

 

4.10.2.2 Proton triple 

Le composé suivant est un proton up + 2 protons down ou un proton down + 2 protons up. 

         

Figure 50 - Proton triple 

Les axes de symétrie des 3 protons sont dans le même sens et confondus. Cette structure est encore 

plus stable que le tritium. Elle sera nommée proton triple. 
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4.10.2.3 Protonette double 

Deux protonettes peuvent se mettre en parallèle et devenir la structure suivante : 

 

Figure 51 - Protonette double 

Les axes de symétrie des 2 protonettes sont dans 2 sens opposés. Cette structure est encore plus 

stable que l’hélium. Elle sera nommée protonette double. 

4.10.2.4 Structure complexe à base de proton 

Il est possible de généraliser la structure de la protonette double en une structure complexe : 
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Figure 52 - Grande Structure à protonettes 

Les axes de symétrie des protons sont tous parallèles. Mais leurs sens s’opposent pour former des 

protonettes. Cette structure peut s’étendre indéfiniment. Elle est très stable car toutes les liaisons 

inter protons sont statiques à énergie négatives. Elle sera nommée structure à protonettes. 

Une structure à protonettes possède les propriétés suivantes : 

• La densité est très élevée, au moins 100 000 fois plus que la matière ordinaire. 

• La rigidité est très élevée, au moins 100 000 fois plus que le diamant. 

• La température de fusion est très élevée, au moins 250 millions de degrés. 

• Elle doit réfléchir la lumière un peu comme un miroir. 

• Elle est isolante thermiquement. 

• Elle est isolante électriquement. 

• Elle est conductrice des photons dans le sens de leur axe de symétrie. Le photon peut même 

être le rayon gamma γ. 

• Etc.  

Les applications de cette matière seraient extraordinaires. Par exemple :  

• Blindage extrêmement résistant, pour tanks, navires de guerre, etc. 

• Coque de sous-marin résistante à la très haute pression,  

• Moteur d’avion résistant à la très haute température,  

• Coque de vaisseaux spatiaux résistant à la très haute température, 

• Coque de navire résistante à la corrosion,  

• Mur de protection résistant à la radiation nucléaire,  

• etc. 

 

4.10.3 Modélisation de structures à base de proton-neutron 
Il est possible de construire des structures avec uniquement des protons up et neutrons down. 

C’est le cas des noyaux atomiques sur Terre, et peut-être même dans l’univers. 

Mais si cette structure est trop grande, l’accumulation de la charge électrique positive est tellement 

grande, que tout nouveau nucléon à charge électrique positive sera repoussé. Ce qui empêche les 

grandes structures de se former. Ce qui explique pourquoi dans la nature il n’existe pas de grandes 

structures formées de nucléons (protons up and neutrons down). 

 

4.10.4 Modélisation de structures à base de symétrie de proton-neutron 
Il est possible de construire des structures avec uniquement des protons down et neutrons up. Il 

s’agit des structures symétriques par rapport aux structures à base de protons et neutrons. L’absence 

de ces structures dans la nature pourrait signifier l’instabilité de ces structures. 

4.10.4.1 Deutériumelle 

Le composé le plus simple est un proton down + un neutron up. 
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Figure 53 - Structure d’une deutériumelle 

Les 2 électrons et le positron du proton down sont face à face avec les 2 positrons et l’un des 

électrons du neutron up. Les axes de symétrie des 2 nucléons sont dans le même sens et confondus. 

La stabilité de cette structure est incertaine. Elle sera nommée deutériumelle. 

 

4.10.4.2 Tritiumelle 

Le composé suivant est un neutron up + 2 protons down ou un proton down + 2 neutrons up. 

         

Figure 54 - Tritiumelle 

Les axes de symétrie des 3 nucléons sont dans le même sens et confondus. La stabilité de cette 

structure est incertaine. Elle sera nommée tritiumelle. 

 

4.10.4.3 Héliumelle 

Deux deutériumelles peuvent se mettre en parallèle et devenir la structure suivante : 
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Figure 55 - Héliumelle 

Les axes de symétrie des 2 deutériumelles sont dans 2 sens opposés. La stabilité de cette structure 

est incertaine. Elle sera nommée héliumelle. 

4.10.4.4 Structure complexe à base d’héliumelle 

Il est possible de généraliser la structure de la héliumelle en une structure complexe : 

 

Figure 56 - Grande Structure à héliumelles 

Les axes de symétrie des deutériumelles sont tous parallèles. Mais leurs sens s’opposent pour former 

des héliumelles. Cette structure peut s’étendre un peu, mais dans une certaine limite. Elle est très 
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stable car toutes les liaisons inter nucléons sont statiques à énergie négatives. Elle sera nommée 

structure à héliumelles. Mais si cette structure est trop grande, l’accumulation de la charge 

électrique négative est tellement grande, que tout nouveau nucléon à charge électrique négative 

sera repoussé. Ce qui empêche les grandes structures de se former. 

 

4.10.5 Modélisation de structures à base de deutérium et sa symétrie 
Il est possible de construire des structures avec des deutériums et des deutériumelles alternés par 

rangée. 

4.10.5.1 Alternancelle 

Le composé suivant est un deutérium + une deutériumelle. 

 

Figure 57 - Alternancelle 

Cette structure est quasiment identique à celle d’hélium. La différence est qu’un des deutériums est 

remplacé par une deutériumelle. Elle sera nommée Alternancelle. La plus importante propriété d’une 

alternancelle par rapport à l’hélium est sa neutralité électrique. 

La stabilité de cette structure est incertaine. La seule incertitude est la stabilité de l’électron du 

neutron up. S’il s’échappait, la structure restante deviendrait électriquement positive, mais resterait 

stable. 

4.10.5.2 Structure complexe à base d’Alternancelle 

Il est possible de généraliser la structure de l’alternancelle, à la fois dans la direction des axes de 

symétrie des nucléons, et dans les directions perpendiculaires. En plus, la neutralité électrique de 

l’alternancelle permet d’avoir des structures macroscopiques. 
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Figure 58 - Solide à base d'alternancelle 

En dehors des 2 faces aux extrémités du solide dans la direction de symétrie, les électrons des 

neutrons up sont stables. En effet, les 2 sorties de l’électron du neutron up sont bloquées par 2 

protons down, et même renforcés par d’autres neutrons up.  

Un tel solide possède les propriétés suivantes : 

• La densité est très élevée, au moins 100 000 fois plus que la matière ordinaire. 

• La rigidité est très élevée, au moins 100 000 fois plus que le diamant. 

• La température de fusion est très élevée, au moins 250 millions de degrés. 

• Elle doit réfléchir la lumière un peu comme un miroir. 

• Elle est isolante thermiquement. 

• Elle est isolante électriquement dans le sens perpendiculaire à leur axe de symétrie. 

• Elle est conductrice électriquement dans le sens de leur axe de symétrie. Il s’agit même 

d’une supra conductivité. 

• Etc.  

Les applications de cette matière seraient extraordinaires. Par exemple :  

• Blindage extrêmement résistant, pour tanks, navires de guerre, etc. 

• Coque de sous-marin résistante à la très haute pression,  

• Moteur d’avion résistant à la très haute température,  

• Coque de vaisseaux spatiaux résistant à la très haute température, 

• Coque de navire résistante à la corrosion,  

• Mur de protection résistant à la radiation nucléaire,  
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• Générateur de champs magnétiques de grande intensité. 

• etc. 

 

 

5 Prédictions 
Certaines prédictions sont immédiates suite à la présente modélisation. Les plus marquantes sont 

listées ici. 

5.1 Deux particules suffisent pour bâtir l’univers  
A part le photon et l’électro, toutes les particules sont des composées de ces deux premiers.  

 

5.2 L’énergie potentielle se trouve dans l’environnement 
L’existence de l’énergie potentielle n’est plus à démontrer. Par exemple entre la Lune et la Terre, 

quand la distance entre elles d diminue, l’énergie potentielle Ep se convertit en énergie cinétique. La 

vitesse de la Lune v augmente. Quand la distance d augmente, la vitesse v diminue. Et l’énergie 

potentielle Ep augmente. Mais où Ep est localisée ? Elle n’est ni dans la Lune, ni dans la Terre. Elle se 

trouve dans le médium environnant. 

 

5.3 La conservation des matières est une loi stricte 
Le présent modèle prédit qu’un photon reste un photon, une charge électrique reste une charge 

électrique. Il n’y a pas de conversion entre un photon et une charge électrique. Un photon ne 

disparait jamais. Une charge électrique ne disparait jamais. 

Par conséquent, la conservation des énergies est également absolue. 

En conséquence, il n’y a pas de neutralisations destructives entre matière et antimatière. D’ailleurs, 

l’antimatière n’existe pas. Ce ne sont que des électrinettes de signes opposés. 

 

5.4 Un quark possède une charge électrique élémentaire entière e+ ou e- 
Connaissant la structure du proton et celle du neutron, il est aisé de prédire que chaque quark 

possède sa propre charge électrique élémentaire. Il n’y a pas besoin de fractionner les charges pour 

obtenir une somme 0 pour la charge électrique du neutron. Puisque le cœur de ces particules est un 

quatrième quark qui peut héberger une électrinette. 

 

5.5 La masse inerte est vectorielle 
La masse inerte d’une particule n’est pas la même dans toutes les directions. Elle est variable dans la 

direction de déplacement en fonction de sa vitesse. Mais elle est constante dans la direction 

perpendiculaire. Cette constante est égale à la charge neutre de la particule. 
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5.6 Le photon a une masse inerte et une masse grave 
Contrairement au modèle standard qui considère que le photon a une masse nulle (inerte ou grave), 

le présent modèle considère que le photon a une masse inerte linéaire infinie et une masse inerte 

perpendiculaire égale à sa charge neutre. 

La raison est simple. La vitesse du photon n’est pas modifiable. Tout se passe comme si le photon a 

une masse infinie. 

Les observations montrent que le photon est dévié les objets massifs. Ce qui indique que la masse 

inerte perpendiculaire n’est pas infinie. Et que le photon est sensible à la gravitation. 

 

5.7 Le photon peut sortir des trous noirs 
Etant donné que le photon a une masse inerte linéaire infinie et une masse inerte perpendiculaire 

égale à sa charge neutre, il peut parfaitement sortir d’un trou noir en suivant l’axe de symétrie de ce 

dernier. 

En effet, la grande masse du trou noir ne peut pas modifier la vitesse du photon. Par contre, la 

direction du photon sera modifiée par cette grande masse. Mais dans le cas où l’axe de rotation du 

trou noir est également l’axe de symétrie du trou noir, la symétrie fait que la direction du photon ne 

sera pas modifiée. Donc, le photon continuera son déplacement jusqu’à la sortie du trou noir. 

Les jets gigantesques des trous noirs observés en astronomie confirment cette prédiction [12]. 

 

5.8 La vitesse du photon peut être supérieure à c 
Etant donné que le photon est propulsé par une substance sensible à la gravitation, les vitesses 

mesurées des photons dans les repères locaux Rli sont toutes égales à c. Mais dans un repère absolu 

Ra, les repères locaux ont chacun leur vitesse vri > 0. Ce qui donne une vitesse résultante du photon 

dans le repère absolu Ra : 

𝑣𝑎⃗⃗⃗⃗ = 𝑣𝑟𝑖⃗⃗⃗⃗  ⃗ + 𝑐  

Si la direction 𝑣𝑟𝑖⃗⃗⃗⃗  ⃗ et la direction 𝑐  sont dans le même sens, va > c. 

Si la direction 𝑣𝑟𝑖⃗⃗⃗⃗  ⃗ et la direction 𝑐  sont dans les sens opposés, va < c. 

Dans l’espace, lorsqu’un photon traverse plusieurs régions ayant des vitesses différentes dans un 

repère absolu, la trajectoire de ce photon n’est pas une ligne droite. Elle est en zigzag. 

 

5.9 L’expansion accélérée de l’univers n’a pas besoin d’énergie noire 
Le présent modèle prédit que l’accélération de l’expansion de l’univers [7] est simplement due aux 

photons. 

En effet, les photons libres se déplacent plus vite que les particules composées. Donc, ces photons se 

trouvant en parties extérieures de l’univers attirent par la force grave les matières se trouvant en 

parties intérieures de l’univers. Et avec le temps, l’expansion s’accélère. 
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5.10 Il existe des océans de particules neutres gravitant autour des centres massifs 
Le présent modèle prédit que des océans de particules neutres existent dans l’univers. La densité de 

ces océans de particules dépend des masses des centres auxquels ces particules gravitent. 

Les résultats d’observation en astronomie prouvent cette prédiction [11]. 

 

5.11 L’aspect ondulatoire des particules n’appartient pas à ces particules 
Le présent modèle prédit que l’aspect ondulatoire des particules appartient à l’environnement 

composé de champ d’énergie et de particules neutres. 

Dans le cas du photon, en se déplaçant, les charginettes dans l’environnement peuvent capturer 

temporairement le photon. L’une des 2 électrinettes ayant capturé le photon fera un mouvement 

d’arc, puis libère le photon. Ce qui produit une onde dépendant de l’énergie du photon. 

En présence de plusieurs photons, les charginettes ayant capturé les photons interagissent entre 

elles. La trajectoire de chaque photon sera ainsi modifiée par la charginette voisine, énergisée par un 

autre photon. Si les électrinettes énergisées des charginettes sont de signes opposés, les deux 

photons vont s’approcher un peu. Dans le cas contraire, les deux photons vont s’éloigner un peu. Le 

résultat final s’appelle l’interférence. 

Dans le cas d’une électrinette, elle attire l’électrinette d’une charginette de l’environnement de signe 

opposé. Ce qui oblige l’autre électrinette de la charginette de s’orienter dans la direction opposée. 

En présence de plusieurs électrinettes de même signe, elles vont s’interagir à distance à travers les 

charginettes. Le même phénomène que l’interférence se produit. On a l’impression que les 

électrinettes ont des propriétés ondulatoires. 

 

5.12 La fusion des noyaux nucléaires nécessite des conditions 
Le présent modèle prédit que la fusion des noyaux nucléaires ne peut se produire que sous une 

pression et une température suffisamment élevée. Ce phénomène provient de l’auto régulation de la 

force électrique proportionnelle à la densité d’énergie environnante. En plus, il faut un certain temps 

pour que deux noyaux soient mis en bonne face.  

 

5.13 Il existe un solide 100 000 fois plus résistant que le diamant 
Le présent modèle prédit qu’il est possible de créer un solide uniquement constitué de nucléons et 

leurs symétries. Ce solide est bien plus dense, plus résistant, plus isolant que les solides constitués 

d’atomes. 

 

5.14 Il existe un super conducteur de photons, y compris le rayon gamma 
Le présent modèle prédit qu’il est possible de créer un solide uniquement constitué de nucléons et 

leurs symétries. Ce solide est bien plus dense, plus résistant, plus isolant que les solides constitués 

d’atomes. Et ce solide conduit les photons dans le sens des axes de symétrie des nucléons. Même le 

rayon gamma γ peut y circuler. L’atténuation des photons est beaucoup plus faible que les fibres 

optiques. 
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5.15 Il existe un supra conducteur électrique à toute température 
Le présent modèle prédit qu’il est possible de créer un solide uniquement constitué de nucléons et 

leurs symétries. Ce solide est bien plus dense, plus résistant, plus isolant que les solides constitués 

d’atomes. Et par-dessus le marché, ce solide offre une supra conductivité dans le sens des axes de 

symétrie des nucléons. Et cette supra conductivité est insensible au changement de température 

jusqu’à 250 millions de degrés. 

 

Auteur : Jacques Xijie Dong Tél. +33 6 95 31 23 08 E-mail : jacques.dong@free.fr 

 

6 Abréviations 
Les abréviations suivantes sont utilisées dans ce manuscrit : 

Alternancelle 
Mot nouveau pour nommer la particule composé d’1 deutérium et d’1 

deutériumelle. 

Charginette 
Mot nouveau pour nommer une particule nouvellement introduite : un couple 

formé d’électron et de positron 

Chrominette 
Mot nouveau pour nommer une particule nouvellement introduite : une 

particule composée de 3 charginettes 

Deutériumelle Mot nouveau pour désigner le deutérium symétrique. 

Electrinette Mot nouveau pour désigner un électron ou un positron. 

Héliumelle Mot nouveau pour désigner l’hélium symétrique. 

Neutronette 
Mot nouveau pour nommer une particule nouvellement introduite : un composé 

de neutron up et de neutron down. 

Nucléonette 
Mot nouveau pour nommer une particule nouvellement introduite : une 

particule composée de 3 chrominettes 

PC Personal Computer 

Photonette 
Mot nouveau pour nommer une particule nouvellement introduite : un couple 

de photon 

Protonette 
Mot nouveau pour nommer une particule nouvellement introduite : un composé 

de proton up et de proton down. 

SM Standard Model 

Tritiumelle Mot nouveau pour désigner le tritium symétrique. 

XM XijieDong Model 

☯ 
Symbole yin et yang dont l'Unicode hexadécimal est 0x262f. Il représente une 

charginette dans XM. 

Δ Caractère Grec delta majuscule. Il représente une chrominette dans XM. 

品 
Idéogramme désignant un objet dont l'Unicode hexadécimal est 0x4637. Il 

représente une nucléonette dans XM. 

中 
Idéogramme désignant le neutre dont l'Unicode hexadécimal est 0x3197. Il 

représente la charge neutre d’un photon dans XM. 

口 
Idéogramme désignant une bouche dont l'Unicode hexadécimal est 0x2f1d. Il 

représente une charge électrique pure dans XM. 

古 
Idéogramme désignant un objet ancien dont l'Unicode hexadécimal est 0x3945. Il 

représente le champ d’énergie dans XM. 

重 
Idéogramme désignant la masse d’un objet dont l'Unicode hexadécimal est 

0x5658. Il représente le champ gravitationnel dans XM. 

电 
Idéogramme désignant un objet électrique dont l'Unicode hexadécimal est 

0x3567. Il représente le champ électrique dans XM. 

磁 
Idéogramme désignant un objet magnétique dont l'Unicode hexadécimal est 

0x3445. Il représente le champ magnétique dans XM. 

mailto:jacques.dong@free.fr
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山 
Idéogramme désignant une montagne dont l'Unicode hexadécimal est 0x2f2d. Il 

représente le champ potentiel dans XM. 

  

 

7 Appendice A : Utilisation de Matlab Simulink  

7.1 Appendice A.1 : Caractéristique des charginettes 
La relation entre le rayon r, la vitesse de rotation v et la masse 中 est une nappe qui peut être tracée 

à l’aide de Matlab.  

Les détails sont donnés dans le fichier généré par Matlab version R2019a :  

charginette_nappe_r_v_zh_kn_10_12_noPot_En.m 

L’axe OX représente la masse. Unité est 10-31 kg. La variable de traçage est : 

xx = [0.08:0.08:8.0]; (plage par défaut) 

%xx = [0.001:0.001:0.10]; (plage de réserve) 

%xx = d’autres plages souhaitées 

Pour obtenir une visibilité convenable, il faut bien dimensionner la plage des valeurs à visualiser. 

Supprimer le « % » devant yy à utiliser et rajouter « % » devant la plage en cours. 

L’axe OY représente la vitesse. Unité est 102 mètre/seconde. La variable de traçage est : 

yy = [0.1:0.1:10]; (plage par défaut) 

%yy = [0.01:0.01:1.0]; (plage de réserve) 

%yy = d’autres plages souhaitées 

Pour obtenir une visibilité convenable, il faut bien dimensionner la plage des valeurs à visualiser. 

Supprimer le « % » devant yy à utiliser et rajouter « % » devant la plage en cours. 

L’axe OZ représente le rayon r. Unité est 10-15 mètre. 

La capture d’écran suivant montre le code source Matlab de la charginette : 
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7.2 Appendice A.2 : Le système d’équations différentielles d’une chrominette 
Le système d’équations différentielles régissant le comportement des charginettes au sein d’une 

chrominette est composé de 2 équations suivantes : 

Équation 30 - équation différentielle 1 de la chrominette 

Équation 24 - équation différentielle 2 de la chrominette 

L’outil logiciel Simulink de Matlab est bien adapté à la résolution numérique de ce système 

d’équations différentielles. 

Les détails sont donnés dans le fichier généré par Matlab Simulink version R2019a :  

chrominette_4pi_electrinetteHF_r_055_zhf_072_B_10_3_kn_21.slx 

Où : 

1. chrominette : signifie qu’il s’agit d’une chrominette. 

2. 4pi   : signifie que la simulation est faite sur 2 périodes de 2π. 

3. electrinetteHF : signifie que les équations portent sur l’électrinette H et 

l’électrinette F. 

4. r_055  : signifie que le rayon rx des charginettes est 0.55605. 
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5. zhf_072  : signifie que la charge neutre 中 F0 de l’électrinette F est 0.72*10-31 

kg. 

6. B_10_3  : signifie que la valeur de la constante β est : 10-3*10-15 m. 

7. kn_21  : signifie que le coefficient d’atténuation est : 10-100D/r + 10-21. 

Les paramètres de la simulation sont donnés par la copie d’écran suivante : 

 

La capture d’écran suivant montre la première vue du schéma Simulink de la chrominette : 

 

 

7.3 Appendice A.3 : Le système d’équations différentielles d’une nucléonette 
Le système d’équations différentielles régissant le comportement des charginettes au sein d’une 

nucléonette est composé de 4 équations suivantes : 

Équation 25 - équation différentielle 1 de la nucléonette 

Équation 26 - équation différentielle 2 de la nucléonette 



Modèle XijieDong V3.0 

 

P a g e  217 | 219 

 

Équation 27 - équation différentielle 3 de la nucléonette 

Équation 28 - équation différentielle 4 de la nucléonette 

L’outil logiciel Simulink de Matlab est bien adapté à la résolution numérique de ce système 

d’équations différentielles. 

Les détails sont donnés dans le fichier généré par Matlab Simulink version R2019a :  

nucleonette_r_036_zhf_8262_B_10_3_kn_21_U.slx 

Où : 

1. nucleonette : signifie qu’il s’agit d’une nucleonette. 

2. r_036  : signifie que le rayon rx des charginettes est 0.36373. 

3. zhf_8262  : signifie que la charge neutre 中 F0 de l’électrinette F est 8.262*10-31 

kg. 

4. B_10_3  : signifie que la valeur de la constante β est : 10-3*10-15 m. 

5. kn_21  : signifie que le coefficient d’atténuation est : 10-100D/r + 10-21. 

6. U   : signifie que la version du fichier est U. 

Les paramètres de la simulation sont les mêmes que pour la chrominette. 

La capture d’écran suivant montre la première vue du schéma Simulink de la nucléonette : 
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